咨询与建议

限定检索结果

文献类型

  • 85 篇 期刊文献
  • 63 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 149 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 132 篇 计算机科学与技术...
    • 66 篇 电气工程
    • 18 篇 信息与通信工程
    • 18 篇 软件工程
    • 10 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 测绘科学与技术
    • 2 篇 交通运输工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 19 篇 医学
    • 18 篇 临床医学
    • 3 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 9 篇 理学
    • 4 篇 物理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 149 篇 scene graph gene...
  • 25 篇 visualization
  • 20 篇 task analysis
  • 19 篇 visual relations...
  • 15 篇 scene understand...
  • 12 篇 semantics
  • 12 篇 training
  • 10 篇 feature extracti...
  • 8 篇 message passing
  • 8 篇 predictive model...
  • 7 篇 object detection
  • 7 篇 computer vision
  • 6 篇 tail
  • 5 篇 transformer
  • 5 篇 long-tailed dist...
  • 4 篇 cognition
  • 4 篇 image understand...
  • 4 篇 knowledge graph
  • 4 篇 vision and langu...
  • 4 篇 dataset

机构

  • 5 篇 chinese acad sci...
  • 4 篇 univ sci & techn...
  • 4 篇 zhejiang univ co...
  • 4 篇 univ elect sci &...
  • 3 篇 shanghai ai lab ...
  • 3 篇 natl univ singap...
  • 3 篇 tsinghua univ pe...
  • 3 篇 beijing jiaotong...
  • 3 篇 peng cheng lab p...
  • 2 篇 east china norma...
  • 2 篇 univ oulu ctr ma...
  • 2 篇 shanghai engn re...
  • 2 篇 zhejiang singapo...
  • 2 篇 wuhan univ sch r...
  • 2 篇 shandong univ sc...
  • 2 篇 hefei comprehens...
  • 2 篇 zhejiang univ sh...
  • 2 篇 univ chinese aca...
  • 2 篇 zhejiang univ pe...
  • 2 篇 natl univ def te...

作者

  • 6 篇 gao lianli
  • 5 篇 shen heng tao
  • 5 篇 yin baocai
  • 5 篇 song jingkuan
  • 3 篇 li xi
  • 3 篇 li yuan-fang
  • 3 篇 xiao jun
  • 3 篇 zhan yibing
  • 3 篇 bober miroslaw
  • 3 篇 wang lichun
  • 3 篇 liu daqi
  • 3 篇 mao zhendong
  • 3 篇 xu kai
  • 3 篇 liu si
  • 3 篇 lyu xinyu
  • 3 篇 he xuming
  • 3 篇 kittler josef
  • 3 篇 zhang ruonan
  • 3 篇 an gaoyun
  • 3 篇 li xuewei

语言

  • 148 篇 英文
  • 1 篇 其他
检索条件"主题词=Scene Graph Generation"
149 条 记 录,以下是1-10 订阅
排序:
scene graph generation based on lightweight entity pair object detection and relation classification ensemble
收藏 引用
NEUROCOMPUTING 2025年 637卷
作者: Hu, Hong-Xiang Yang, Xu-Hua Zhao, Yu-Yong Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China
scene graph generation (SGG) aims to automatically generate a semantic graph structure, enabling a deeper understanding and reasoning of visual scenes. It is widely used in scenarios such as autonomous driving, virtua... 详细信息
来源: 评论
scene Adaptive Context Modeling and Balanced Relation Prediction for scene graph generation
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2025年 第3期21卷 1-19页
作者: Xu, Kai Wang, Lichun Li, Shuang Gao, Tong Yin, Baocai Beijing Univ Technol Beijing Key Lab Multimedia & Intelligent Software Beijing Peoples R China Beijing Informat Sci & Technol Univ Sch Automat Beijing Peoples R China
scene graph generation (SGG) aims to perceive objects and their relations in images, which can bridge the gap between upstream detection tasks and downstream high-level visual understanding tasks. For SGG models, over... 详细信息
来源: 评论
Attention redirection transformer with semantic oriented learning for unbiased scene graph generation
收藏 引用
PATTERN RECOGNITION 2025年 158卷
作者: Zhang, Ruonan An, Gaoyun Cen, Yigang Ruan, Qiuqi Beijing Jiaotong Univ Inst Informat Sci Beijing Peoples R China Beijing Key Lab Adv Informat Sci & Network Technol Beijing Peoples R China
scene graph generation (SGG) plays an important role in scene understanding because all of the objects and relations in an image can be abstracted into a concise topological graph. Due to the complexity of visual scen... 详细信息
来源: 评论
Relation-Specific Feature Augmentation for unbiased scene graph generation
收藏 引用
PATTERN RECOGNITION 2025年 157卷
作者: Liu, Zhihong Wang, Jianji Chen, Hui Ma, Yongqiang Zheng, Nanning Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Natl Engn Res Ctr Visual Informat & Applicat Natl Key Lab Human Machine Hybrid Augmented Intell Xian 710049 Shanxi Peoples R China
scene graph generation (SGG) models suffer from the long-tailed distribution of relations, which results in biased predictions that favor head relations (e.g. , on) over informative tail ones (e.g. , sitting on, layin... 详细信息
来源: 评论
Relationship-Incremental scene graph generation by a Divide-and-Conquer Pipeline With Feature Adapter
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2025年 34卷 678-688页
作者: Li, Xuewei Zheng, Guangcong Yu, Yunlong Ji, Naye Li, Xi Zhejiang Univ Coll Comp Sci & Technol Hangzhou 310027 Peoples R China Zhejiang Prov Key Lab Informat Proc Commun & Netwo Hangzhou 310007 Peoples R China Commun Univ Zhejiang Coll Media Engn Hangzhou 310018 Peoples R China Zhejiang Singapore Innovat & AI Joint Res Lab Hangzhou 310027 Peoples R China
As a challenging computer vision task, scene graph generation (SGG) finds the latent semantic relationships among objects from a given image, which may be limited by the datasets and real-world scenarios. In this pape... 详细信息
来源: 评论
Informative scene graph generation via Debiasing
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2025年 1-24页
作者: Gao, Lianli Lyu, Xinyu Guo, Yuyu Hu, Yuxuan Li, Yuan-Fang Xu, Lu Shen, Heng Tao Song, Jingkuan Univ Elect Sci & Technol China Shenzhen Inst Adv Study Shenzhen Peoples R China Southwestern Univ Finance & Econ Chengdu Peoples R China Southwest Univ Chongqing Peoples R China Monash Univ Melbourne Vic Australia Kuaishou Beijing Peoples R China Tongji Univ Shanghai Peoples R China
scene graph generation aims to detect visual relationship triplets, (subject, predicate, object). Due to biases in data, current models tend to predict common predicates, e.g., "on" and "at", inste... 详细信息
来源: 评论
A Causal Adjustment Module for Debiasing scene graph generation
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025年 第5期47卷 4024-4043页
作者: Liu, Li Sun, Shuzhou Zhi, Shuaifeng Shi, Fan Liu, Zhen Heikkila, Janne Liu, Yongxiang NUDT Coll Elect Sci & Technol Changsha 41007 Hunan Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100190 Peoples R China Univ Oulu Ctr Machine Vis & Signal Anal CMVS Oulu 90570 Finland NUDT Coll Elect Engn Hefei 41007 Hunan Peoples R China
While recent debiasing methods for scene graph generation (SGG) have shown impressive performance, these efforts often attribute model bias solely to the long-tail distribution of relationships, overlooking the more p... 详细信息
来源: 评论
Union-Redefined Prototype Network for scene graph generation
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 280卷
作者: Jung, Namgyu Choi, Chang Gachon Univ 1342 Seongnam Daero Seongnam 13120 Gyeonggi Do South Korea
Recent advances in scene graph generation employ commonsense knowledge to model visual prototypes for various predicates. However, indiscriminate application of prototypes to all entity pairs within a predicate can le... 详细信息
来源: 评论
Mining informativeness in scene graphs: Prioritizing informative relations in scene graph generation for enhanced performance in applications
收藏 引用
PATTERN RECOGNITION LETTERS 2025年 189卷 64-70页
作者: Neau, Maelic Santos, Paulo E. Bosser, Anne-Gwenn Macvicar, Alistair Buche, Cedric Flinders Univ S Australia Coll Sci & Engn Sturt Rd Adelaide SA 5042 Australia Ecole Natl Ingn Brest 945 Ave Technopole F-29280 Plouzane France Naval Grp Pacific Lot14 Adelaide SA 5000 Australia PrioriAnalytica 74 Pirie St Adelaide SA 5000 Australia CNRS UMR 6285 Lab STICC F-29280 Plouzane France
Learning to compose visual relationships from raw images in the form of scene graphs is a highly challenging Computer Vision task, yet it is essential for applications related to scene understanding. However, no curre... 详细信息
来源: 评论
Semantic-enhanced panoptic scene graph generation through hybrid and axial attentions
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2025年 第1期11卷 1-15页
作者: Kuang, Xinhe Che, Yuxin Han, Huiyan Liu, Yimin Northeastern Univ Sydney Smart Technol Coll Qinhuangdao 066004 Peoples R China North Univ China Sch Comp Sci & Technol Taiyuan 030051 Peoples R China Shanxi Key Lab Machine Vis & Virtual Real Taiyuan 030051 Peoples R China Shanxi Ctr Technol Innovat Digital & Intelligent I Taiyuan 030031 Peoples R China Shanxi Cultural Tourism Grp Informat Technol Co Lt Taiyuan 030031 Peoples R China
The generation of panoramic scene graphs represents a cutting-edge challenge in image scene understanding, necessitating sophisticated predictions of both intra-object relationships and interactions between objects an... 详细信息
来源: 评论