咨询与建议

限定检索结果

文献类型

  • 95 篇 期刊文献
  • 64 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 160 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 156 篇 工学
    • 140 篇 计算机科学与技术...
    • 72 篇 电气工程
    • 19 篇 软件工程
    • 18 篇 信息与通信工程
    • 12 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 交通运输工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 2 篇 石油与天然气工程
    • 2 篇 网络空间安全
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 安全科学与工程
  • 20 篇 医学
    • 18 篇 临床医学
    • 3 篇 特种医学
    • 2 篇 公共卫生与预防医...
    • 1 篇 基础医学(可授医学...
  • 13 篇 理学
    • 5 篇 物理学
    • 3 篇 数学
    • 3 篇 化学
    • 2 篇 地球物理学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 公共管理

主题

  • 160 篇 scene graph gene...
  • 25 篇 visualization
  • 20 篇 task analysis
  • 19 篇 visual relations...
  • 17 篇 scene understand...
  • 13 篇 semantics
  • 13 篇 training
  • 11 篇 feature extracti...
  • 8 篇 object detection
  • 8 篇 message passing
  • 8 篇 predictive model...
  • 7 篇 long-tailed dist...
  • 7 篇 computer vision
  • 6 篇 tail
  • 5 篇 panoptic segment...
  • 5 篇 transformer
  • 5 篇 image understand...
  • 5 篇 causal inference
  • 4 篇 cognition
  • 4 篇 knowledge graph

机构

  • 5 篇 chinese acad sci...
  • 4 篇 univ sci & techn...
  • 4 篇 zhejiang univ co...
  • 4 篇 univ elect sci &...
  • 3 篇 shanghai ai lab ...
  • 3 篇 natl univ singap...
  • 3 篇 tsinghua univ pe...
  • 3 篇 beijing jiaotong...
  • 3 篇 peng cheng lab p...
  • 2 篇 east china norma...
  • 2 篇 univ oulu ctr ma...
  • 2 篇 beijing normal u...
  • 2 篇 shanghai engn re...
  • 2 篇 zhejiang singapo...
  • 2 篇 wuhan univ sch r...
  • 2 篇 shandong univ sc...
  • 2 篇 hefei comprehens...
  • 2 篇 zhejiang univ sh...
  • 2 篇 univ chinese aca...
  • 2 篇 zhejiang univ pe...

作者

  • 6 篇 gao lianli
  • 5 篇 shen heng tao
  • 5 篇 yin baocai
  • 5 篇 song jingkuan
  • 4 篇 an gaoyun
  • 3 篇 li xi
  • 3 篇 he jun
  • 3 篇 li yuan-fang
  • 3 篇 xiao jun
  • 3 篇 zhan yibing
  • 3 篇 bober miroslaw
  • 3 篇 wang lichun
  • 3 篇 liu daqi
  • 3 篇 mao zhendong
  • 3 篇 xu kai
  • 3 篇 liu si
  • 3 篇 lyu xinyu
  • 3 篇 liu li
  • 3 篇 zhi shuaifeng
  • 3 篇 he xuming

语言

  • 158 篇 英文
  • 2 篇 其他
检索条件"主题词=Scene Graph Generation"
160 条 记 录,以下是141-150 订阅
排序:
Visual Relationship Detection With Image Position and Feature Information Embedding and Fusion
收藏 引用
IEEE ACCESS 2022年 10卷 117170-117176页
作者: Peng, Jinghui Zhang, Ying Huang, Weichun Mil Acad Sci Inst Syst Engn Beijing 100101 Peoples R China
Visual relationship detection (VRD) is an important direction in the field of image processing, and it is a research task to explore object relationships based on object recognition and localization regression. At the... 详细信息
来源: 评论
SANGRIA: Surgical Video scene graph Optimization for Surgical Workflow Prediction  6th
SANGRIA: Surgical Video Scene Graph Optimization for Surgic...
收藏 引用
6th International Workshop on graphs in Biomedical Image Analysis, GRAIL 2024
作者: Köksal, Çağhan Ghazaei, Ghazal Holm, Felix Farshad, Azade Navab, Nassir Carl Zeiss AG Oberkochen Germany Technische Universität München Munich Germany Munich Center for Machine Learning Munich Germany
graph-based holistic scene representations facilitate surgical workflow understanding and have recently demonstrated significant success. However, this task is often hindered by the limited availability of densel... 详细信息
来源: 评论
Haystack: A Panoptic scene graph Dataset to Evaluate Rare Predicate Classes
Haystack: A Panoptic Scene Graph Dataset to Evaluate Rare Pr...
收藏 引用
IEEE/CVF International Conference on Computer Vision (ICCV)
作者: Lorenz, Julian Barthel, Florian Kienzle, Daniel Lienhart, Rainer Univ Augsburg Augsburg Germany
Current scene graph datasets suffer from strong long-tail distributions of their predicate classes. Due to a very low number of some predicate classes in the test sets, no reliable metrics can be retrieved for the rar... 详细信息
来源: 评论
Configurable graph Reasoning for Visual Relationship Detection
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022年 第1期33卷 117-129页
作者: Zhu, Yi Liang, Xiwen Lin, Bingqian Ye, Qixiang Jiao, Jianbin Lin, Liang Liang, Xiaodan Univ Chinese Acad Sci UCAS Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China
Visual commonsense knowledge has received growing attention in the reasoning of long-tailed visual relationships biased in terms of object and relation labels. Most current methods typically collect and utilize extern... 详细信息
来源: 评论
Learning multimodal relationship interaction for visual relationship detection
收藏 引用
PATTERN RECOGNITION 2022年 132卷
作者: Liu, Zhixuan Zheng, Wei-Shi Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China
Visual relationship detection aims to recognize visual relationships in scenes as triplets (subject-predicate-object). Previous works have shown remarkable progress by introducing multimodal features, external linguis... 详细信息
来源: 评论
Semantic Privacy-Preserving for Video Surveillance Services on the Edge  8
Semantic Privacy-Preserving for Video Surveillance Services ...
收藏 引用
8th Annual IEEE/ACM Symposium on Edge Computing (SEC)
作者: Huang, Alexander Y. C. Chen, Yitao Huang, Dijiang Zhao, Ming Arizona State Univ Hamilton High Tempe AZ 85287 USA Arizona State Univ Tempe AZ 85287 USA
Intelligent Video surveillance systems, leveraging edge computing, have become increasingly prevalent in various facilities, providing advanced monitoring and management capabilities. However, these systems can inadve... 详细信息
来源: 评论
Naive scene graphs : How Visual is Modern Visual Relationship Detection?  20
Naive Scene Graphs : How Visual is Modern Visual Relationshi...
收藏 引用
20th Conference on Robots and Vision (CRV)
作者: Abou Chacra, David Zelek, John Univ Waterloo Dept Syst Design Engn Waterloo ON Canada
Modern approaches to scene graph generation still struggle with their performance, with even state of the art approaches hovering under a 15% mean recall on certain evaluation modes. This poor performance is partially... 详细信息
来源: 评论
DIFFERENCE-AWARE ITERATIVE REASONING NETWORK FOR KEY RELATION DETECTION
DIFFERENCE-AWARE ITERATIVE REASONING NETWORK FOR KEY RELATIO...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zhao, Bowen Chen, Weidong Hu, Bo Xie, Hongtao Mao, Zhendong Univ Sci & Technol China Hefei Peoples R China
scene graph serves as a crucial visual representation of an image, with salient objects providing richer semantics for detecting key relations. However, most methods use a one-step reasoning manner for key relation de... 详细信息
来源: 评论
Align R-CNN: A Pairwise Head Network for Visual Relationship Detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2022年 24卷 1266-1276页
作者: Tajrobehkar, Mitra Tang, Kaihua Zhang, Hanwang Lim, Joo-Hwee Nanyang Technol Univ SCSE Singapore 67904777 Singapore ASTAR Inst Infocomm Res Singapore 119613 Singapore
scene graphs connect individual objects with visual relationships. They serve as a comprehensive scene representation for downstream multimodal tasks. However, by exploring recent progress in scene graph generation (S... 详细信息
来源: 评论
Adaptive Multimodal Fusion with Cross-Attention for Robust scene Segmentation and Urban Economic Analysis
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第1期15卷 438-438页
作者: Zhong, Chun Zeng, Shihong Zhu, Hongqiu Hunan Univ Sci & Technol Xiangtan 411199 Peoples R China Cent South Univ Sch Automat Changsha 410017 Peoples R China
With the increasing demand for accurate multimodal data analysis in complex scenarios, existing models often struggle to effectively capture and fuse information across diverse modalities, especially when data include... 详细信息
来源: 评论