咨询与建议

限定检索结果

文献类型

  • 140 篇 会议
  • 134 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 275 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 222 篇 计算机科学与技术...
    • 114 篇 电气工程
    • 41 篇 软件工程
    • 27 篇 信息与通信工程
    • 15 篇 控制科学与工程
    • 11 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 网络空间安全
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 40 篇 医学
    • 40 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 26 篇 理学
    • 17 篇 物理学
    • 5 篇 化学
    • 5 篇 生物学
    • 3 篇 数学
    • 1 篇 系统科学
  • 12 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 275 篇 scene text recog...
  • 39 篇 deep learning
  • 28 篇 scene text detec...
  • 26 篇 transformer
  • 20 篇 text recognition
  • 16 篇 attention mechan...
  • 14 篇 optical characte...
  • 12 篇 feature extracti...
  • 11 篇 character recogn...
  • 10 篇 ocr
  • 10 篇 convolutional ne...
  • 9 篇 neural network
  • 8 篇 text detection
  • 8 篇 convolutional ne...
  • 7 篇 visualization
  • 7 篇 data augmentatio...
  • 7 篇 attention
  • 6 篇 vision transform...
  • 6 篇 task analysis
  • 6 篇 recurrent neural...

机构

  • 6 篇 scut zhuhai inst...
  • 6 篇 univ chinese aca...
  • 6 篇 huazhong univ sc...
  • 5 篇 fudan univ sch c...
  • 5 篇 tomorrow adv lif...
  • 5 篇 south china univ...
  • 5 篇 indian stat inst...
  • 5 篇 indian stat inst...
  • 4 篇 east china norma...
  • 4 篇 chinese acad sci...
  • 3 篇 chinese acad sci...
  • 3 篇 nanyang technol ...
  • 3 篇 natl univ singap...
  • 3 篇 univ malaya fac ...
  • 3 篇 univ sci & techn...
  • 3 篇 univ chinese aca...
  • 3 篇 univ philippines...
  • 3 篇 huazhong univ sc...
  • 3 篇 tongji univ dept...
  • 2 篇 iflytek iflytek ...

作者

  • 12 篇 pal umapada
  • 10 篇 bai xiang
  • 9 篇 jin lianwen
  • 6 篇 yao cong
  • 6 篇 lu shijian
  • 6 篇 luo canjie
  • 6 篇 shivakumara pala...
  • 5 篇 liu cheng-lin
  • 5 篇 lu yue
  • 5 篇 wang wei
  • 5 篇 qiao zhi
  • 4 篇 xie hongtao
  • 4 篇 wang peng
  • 3 篇 wang chunheng
  • 3 篇 wang jing
  • 3 篇 saluja rohit
  • 3 篇 zhang yongdong
  • 3 篇 bai jinfeng
  • 3 篇 guo qiang
  • 3 篇 lyu pengyuan

语言

  • 273 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Scene Text Recognition"
275 条 记 录,以下是1-10 订阅
排序:
scene text recognition That Eliminates Background and Character Noise Interference
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第7期15卷 3545-3545页
作者: Tang, Shancheng Cao, Yaoqian Liang, Shaojun Jin, Zicheng Lai, Kun Xian Univ Sci & Technol Coll Commun & Informat Engn Xian 710054 Peoples R China
In natural photographs, complex background noise and character noise frequently interfere with scene text identification. To solve the aforementioned concerns, this paper proposes a novel scene character identificatio... 详细信息
来源: 评论
scene text recognition Based on Corner Point and Attention Mechanism  21st
Scene Text Recognition Based on Corner Point and Attention M...
收藏 引用
21st Pacific Rim International Conference on Artificial Intelligence
作者: Wang, Hui Hu, Tao Geng, Xiaoke Li, Kai Huazhong Univ Sci & Technol Sch Comp Sci & Technol Wuhan 430074 Peoples R China
The irregular distribution of text is a significant challenge for current scene text recognizers. Rectification methods based on Thin-Plate Spline (TPS) are adopted by various recognizers due to their plug-and-play na... 详细信息
来源: 评论
scene text recognition Via k-NN Attention-Based Decoder and Margin-Based Softmax Loss  7th
Scene Text Recognition Via k-NN Attention-Based Decoder and ...
收藏 引用
7th Chinese Conference on Pattern recognition and Computer Vision
作者: Zhang, Hongxia Xu, Minqiang He, Liang Xinjiang Univ Sch Comp Sci & Technol Urumqi 830017 Peoples R China iFLYTEK Co Ltd Hefei 230088 Peoples R China Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China
Facing various complex background and diverse text image shape, this paper proposes an encoder-decoder-based scene text recognition model named E2D-Rec to enhance the recognition capability of irregular text and achie... 详细信息
来源: 评论
Attention Guidance by Cross-Domain Supervision Signals for scene text recognition
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2025年 34卷 717-728页
作者: Xue, Fanfu Sun, Jiande Xue, Yaqi Wu, Qiang Zhu, Lei Chang, Xiaojun Cheung, Sen-Ching Shandong Normal Univ Sch Informat Sci & Engn Jinan 250014 Peoples R China Shandong Univ Tradit Chinese Med Coll Intelligence & Informat Engn Jinan 250355 Peoples R China Shandong Univ Sch Informat Sci & Engn Qingdao 266237 Peoples R China Tongji Univ Sch Elect & Informat Engn Shanghai 200070 Peoples R China Univ Technol Sydney Fac Engn & InformationTechnol Sydney NSW 2007 Australia Univ Kentucky Dept Elect & Comp Engn Lexington KY 40506 USA
Despite recent advances, scene text recognition remains a challenging problem due to the significant variability, irregularity and distortion in text appearance and localization. Attention-based methods have become th... 详细信息
来源: 评论
SNFR: salient neighbor decoding and text feature refining for scene text recognition
收藏 引用
MACHINE VISION AND APPLICATIONS 2025年 第2期36卷 1-13页
作者: Lu, Tongwei Fan, Huageng Chen, Yuqian Shao, Pengyan Wuhan Inst Technol Sch Comp Sci & Engn Wuhan 430205 Peoples R China Wuhan Inst Technol Hubei Key Lab Intelligent Robot Wuhan 430205 Peoples R China
scene text recognition methods are broadly categorized into serial and parallel. Serial methods achieve superior accuracy but are slower in speed. Parallel methods offer faster speed but may sacrifice accuracy. Curren... 详细信息
来源: 评论
Instruction-Guided scene text recognition
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025年 第4期47卷 2723-2738页
作者: Du, Yongkun Chen, Zhineng Su, Yuchen Jia, Caiyan Jiang, Yu-Gang Fudan Univ Sch Comp Sci Shanghai 200433 Peoples R China Beijing Jiaotong Univ Sch Comp Sci & Technol Beijing 100044 Peoples R China
Multi-modal models have shown appealing performance in visual recognition tasks, as free-form text-guided training evokes the ability to understand fine-grained visual content. However, current models cannot be trivia... 详细信息
来源: 评论
An adaptive multi-head self-attention coupled with attention filtered LSTM for advanced scene text recognition
收藏 引用
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND recognition 2025年 1-20页
作者: Selvam, Prabu Kumar, S. N. Kannadhasan, S. SRM Inst Sci & Technol Sch Comp Tiruchirapalli Campus Tiruchirapalli 621105 India Amal Jyothi Coll Engn Dept Elect & Elect Engn Kanjirappally 686518 Kerala India Study World Coll Engn Dept Elect & Commun Engn Coimbatore India
Recognizing text embedded within a scene plays a critical role in computer vision by aiming to extract textual information from images. This task proves to be more challenging than optical character recognition due to... 详细信息
来源: 评论
Apvit: ViT with adaptive patches for scene text recognition
收藏 引用
DISCOVER APPLIED SCIENCES 2025年 第4期7卷
作者: Zhang, Ning Li, Ce Wang, Zongshun Ma, Jialin Feng, Zhiqiang Lanzhou Univ Technol Coll Elect & Informat Engn Lanzhou 730050 Gansu Peoples R China
scene texts in nature exhibit varied colors, which serve as a significant distinguishing feature that effectively suppresses background interference. In this study, color clustering is utilized as a prior guide to gro... 详细信息
来源: 评论
Exploring Out-of-Distribution scene text recognition for Driving scenes with Hybrid Test-Time Adaptation  7th
Exploring Out-of-Distribution Scene Text Recognition for Dri...
收藏 引用
7th Chinese Conference on Pattern recognition and Computer Vision
作者: Xian, Xiaoyu Qin, Jinghui Shi, Yukai Tian, Daxin Lin, Liang Beihang Univ Beijing 100080 Peoples R China CRRC Acad Co Ltd Beijing 100070 Peoples R China Guangdong Univ Technol Guangzhou 510006 Guangdong Peoples R China Sun Yat Sen Univ Guangzhou 510000 Guangdong Peoples R China
scene text recognition (STR) in dynamic driving scenes is important for recognizing real-world kilometer marker to facilitate the scheduling and operation of industrial scenes. For example, the location information of... 详细信息
来源: 评论
Improving scene text recognition with Counting-Aware Contrastive Learning and Attention Alignment  7th
Improving Scene Text Recognition with Counting-Aware Contras...
收藏 引用
7th Chinese Conference on Pattern recognition and Computer Vision
作者: Yang, JunJie Zhoul, Bo Zhu, Anna Wuhan Univ Technol Sch Comp Sci & Artificial Intelligence Wuhan Hubei Peoples R China Wuhan Univ Technol Chongqing Res Inst Chongqing Peoples R China
Contrastive learning for scene text recognition (STR) task greatly relieve the problem of relying on large scale of synthetic data or labeled data for training. Most of previous STR method using contrastive learning a... 详细信息
来源: 评论