咨询与建议

限定检索结果

文献类型

  • 139 篇 会议
  • 135 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 275 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 264 篇 工学
    • 224 篇 计算机科学与技术...
    • 116 篇 电气工程
    • 42 篇 软件工程
    • 28 篇 信息与通信工程
    • 17 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 网络空间安全
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 41 篇 医学
    • 41 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 27 篇 理学
    • 18 篇 物理学
    • 6 篇 化学
    • 5 篇 生物学
    • 4 篇 数学
    • 1 篇 系统科学
  • 12 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 275 篇 scene text recog...
  • 39 篇 deep learning
  • 28 篇 scene text detec...
  • 26 篇 transformer
  • 21 篇 text recognition
  • 16 篇 attention mechan...
  • 14 篇 optical characte...
  • 12 篇 feature extracti...
  • 12 篇 character recogn...
  • 10 篇 ocr
  • 10 篇 convolutional ne...
  • 9 篇 neural network
  • 8 篇 text detection
  • 8 篇 visualization
  • 8 篇 convolutional ne...
  • 7 篇 data augmentatio...
  • 7 篇 attention
  • 6 篇 vision transform...
  • 6 篇 task analysis
  • 6 篇 transformers

机构

  • 6 篇 scut zhuhai inst...
  • 6 篇 univ chinese aca...
  • 6 篇 huazhong univ sc...
  • 5 篇 fudan univ sch c...
  • 5 篇 tomorrow adv lif...
  • 5 篇 south china univ...
  • 5 篇 indian stat inst...
  • 5 篇 indian stat inst...
  • 4 篇 east china norma...
  • 4 篇 chinese acad sci...
  • 4 篇 univ sci & techn...
  • 3 篇 chinese acad sci...
  • 3 篇 nanyang technol ...
  • 3 篇 natl univ singap...
  • 3 篇 univ malaya fac ...
  • 3 篇 univ chinese aca...
  • 3 篇 univ philippines...
  • 3 篇 huazhong univ sc...
  • 3 篇 tongji univ dept...
  • 2 篇 iflytek iflytek ...

作者

  • 12 篇 pal umapada
  • 10 篇 bai xiang
  • 9 篇 jin lianwen
  • 6 篇 yao cong
  • 6 篇 lu shijian
  • 6 篇 luo canjie
  • 6 篇 shivakumara pala...
  • 5 篇 liu cheng-lin
  • 5 篇 lu yue
  • 5 篇 wang wei
  • 5 篇 xie hongtao
  • 5 篇 qiao zhi
  • 4 篇 zhang yongdong
  • 4 篇 wang yuxin
  • 4 篇 wang peng
  • 3 篇 wang chunheng
  • 3 篇 wang jing
  • 3 篇 saluja rohit
  • 3 篇 bai jinfeng
  • 3 篇 fang shancheng

语言

  • 273 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Scene Text Recognition"
275 条 记 录,以下是31-40 订阅
排序:
scene text recognition with Orientation Rectification via IC-STN
Scene Text Recognition with Orientation Rectification via IC...
收藏 引用
IEEE Region 10 Conference (TENCON)
作者: Naosekpam, Veronica Shishir, Ailneni Sai Sahu, Nilkanta IIIT Guwahati Dept CSE Gauhati Assam India
text recognition from natural scene images is an arduous task due to non-horizontal shaped text caused by perspective distortion and low camera angle. This work presents a framework for natural scene text recognition ... 详细信息
来源: 评论
Align, enhance and read: scene Tibetan text recognition with cross-sequence reasoning
收藏 引用
APPLIED SOFT COMPUTING 2025年 169卷
作者: Ke, Wenjun Liu, Yutian Yang, Xiaokang Wei, Jianguo Hou, Qingzhi Tianjin Univ Coll intelligence & Comp Tianjin 300000 Peoples R China Tianjin Univ State Key Lab Hydrwil Engn Intelligent Construct & Tianjin 300000 Peoples R China
Market demand has primarily driven scene text recognition to focus on widely spoken languages, such as English and Chinese. Current research put scarce attention on Tibetan, despite its substantial demand and potentia... 详细信息
来源: 评论
scene text recognition with Image-text Matching-Guided Dictionary  17th
Scene Text Recognition with Image-Text Matching-Guided Dicti...
收藏 引用
17th International Conference on Document Analysis and recognition (ICDAR)
作者: Wei, Jiajun Zhan, Hongjian Tu, Xiao Lu, Yue Pal, Umapada East China Normal Univ Shanghai Key Lab Multidimens Informat Proc Shanghai Peoples R China East China Normal Univ Chongqing Inst Chongqing 401120 Peoples R China Indian Stat Inst CVPR Unit Kolkata India
Employing a dictionary can efficiently rectify the deviation between the visual prediction and the ground truth in scene text recognition methods. However, the independence of the dictionary on the visual features may... 详细信息
来源: 评论
scene text recognition USING PROGRESSIVE RECTIFICATION NETWORK AND SPELLING ERROR CORRECTION LANGUAGE MODEL  31
SCENE TEXT RECOGNITION USING PROGRESSIVE RECTIFICATION NETWO...
收藏 引用
2024 International Conference on Image Processing
作者: Peng, Ming-Zheng Cheng, Hao-Chung Le, Phuong-Thi Wang, Cheng-Chun Wang, Chien-Yao Wang, Jia-Ching Natl Cent Univ Dept Comp Sci & Informat Engn Taoyuan Taiwan Acad Sinica Taipei Taiwan
scene text recognition has gained popularity in deep neural network research. Compared to document text recognition, scene text recognition faces challenges such as complex backgrounds, diverse fonts, and blurred char... 详细信息
来源: 评论
scene text recognition with Multi-decoders  21
Scene Text Recognition with Multi-decoders
收藏 引用
21st International Conference on Control, Automation and Systems (ICCAS)
作者: Wang, Yao Ha, Jong-Eun Seoul Natl Univ Sci & Technol Grad Sch Automot Engn Seoul 13391 South Korea Seoul Nation Univ Sci & Technol Dept Mech & Automot Engn Seoul 13391 South Korea
In this article, we focus on the scene text recognition problem, which is one of the challenging sub-files of computer vision because of the random existence of scene text. Recently, scene text recognition has achieve... 详细信息
来源: 评论
scene text recognition VIA GATED CASCADE ATTENTION
SCENE TEXT RECOGNITION VIA GATED CASCADE ATTENTION
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Wang, Siwei Wang, Yongtao Qin, Xiaoran Zhao, Qijie Tang, Zhi Peking Univ Inst Comp Sci & Technol Beijing Peoples R China
scene text recognition is very challenging due to the complex background, low resolution, perspective distortion and curved placement, etc. Most of the state-of-the-art methods adopt the attention-based encoder-decode... 详细信息
来源: 评论
scene text recognition with Single-Point Decoding Network  2nd
Scene Text Recognition with Single-Point Decoding Network
收藏 引用
2nd CAAI International Conference on Artificial Intelligence (CICAI)
作者: Chen, Lei Qin, Haibo Zhang, Shi-Xue Yang, Chun Yin, Xucheng Univ Sci & Technol Beijing Beijing Peoples R China
In recent years, attention-based scene text recognition methods have been very popular and attracted the interest of many researchers. Attention-based methods can adaptively focus attention on a small area or even sin... 详细信息
来源: 评论
scene text recognition with Auto-Aligned Feature Generator  19
Scene Text Recognition with Auto-Aligned Feature Generator
收藏 引用
19th IEEE International Conference on Data Mining (ICDM)
作者: Yang, Qiangpeng Jin, Hongsheng Cheng, Mengli Zhou, Wenmeng Huang, Jun Lin, Wei Alibab Grp Hangzhou Peoples R China
scene text recognition has attracted increasing attention in computer vision due to its various applications. Most of the existing scene text recognition methods are under the encoder-decoder framework. In order to im... 详细信息
来源: 评论
scene text recognition IN MULTIPLE FRAMES BASED ON text TRACKING
SCENE TEXT RECOGNITION IN MULTIPLE FRAMES BASED ON TEXT TRAC...
收藏 引用
IEEE International Conference on Multimedia and Expo Workshops (ICMEW)
作者: Rong, Xuejian Yi, Chucai Yang, Xiaodong Tian, Yingli CUNY City Coll New York NY 10031 USA CUNY Grad Ctr New York NY USA
text signage as visual indicators in natural scene plays an important role in navigation and notification in our daily life. Most previous methods of scene text extraction are developed from a single scene image. In t... 详细信息
来源: 评论
scene text recognition with Cascade Attention Network  21
Scene Text Recognition with Cascade Attention Network
收藏 引用
11th International Conference on Multimedia Retrieval (ICMR)
作者: Zhang, Min Ma, Meng Wang, Ping Peking Univ Sch Elect & Comp Engn Shenzhen Grad Sch Shenzhen Peoples R China Peking Univ Natl Engn Res Ctr Software Engn Beijing Peoples R China Minist Educ Key Lab High Confidence Software Technol PKU Beijing Peoples R China
scene text recognition (STR) has experienced increasing popularity both in academia and in industry. Regarding STR as a sequence prediction task, most state-of-the-art (SOTA) approaches employ the attention-based enco... 详细信息
来源: 评论