咨询与建议

限定检索结果

文献类型

  • 140 篇 会议
  • 138 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 268 篇 工学
    • 229 篇 计算机科学与技术...
    • 116 篇 电气工程
    • 43 篇 软件工程
    • 28 篇 信息与通信工程
    • 17 篇 控制科学与工程
    • 12 篇 电子科学与技术(可...
    • 8 篇 仪器科学与技术
    • 6 篇 机械工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 冶金工程
    • 2 篇 动力工程及工程热...
    • 2 篇 网络空间安全
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 41 篇 医学
    • 41 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 27 篇 理学
    • 18 篇 物理学
    • 6 篇 化学
    • 5 篇 生物学
    • 4 篇 数学
    • 1 篇 系统科学
  • 12 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 279 篇 scene text recog...
  • 39 篇 deep learning
  • 28 篇 scene text detec...
  • 26 篇 transformer
  • 22 篇 text recognition
  • 16 篇 attention mechan...
  • 15 篇 optical characte...
  • 12 篇 feature extracti...
  • 12 篇 character recogn...
  • 11 篇 ocr
  • 10 篇 convolutional ne...
  • 9 篇 neural network
  • 8 篇 text detection
  • 8 篇 visualization
  • 8 篇 convolutional ne...
  • 7 篇 data augmentatio...
  • 7 篇 attention
  • 6 篇 vision transform...
  • 6 篇 task analysis
  • 6 篇 transformers

机构

  • 6 篇 tomorrow adv lif...
  • 6 篇 scut zhuhai inst...
  • 6 篇 univ chinese aca...
  • 6 篇 huazhong univ sc...
  • 5 篇 fudan univ sch c...
  • 5 篇 chinese acad sci...
  • 5 篇 south china univ...
  • 5 篇 indian stat inst...
  • 5 篇 indian stat inst...
  • 4 篇 east china norma...
  • 4 篇 univ sci & techn...
  • 3 篇 chinese acad sci...
  • 3 篇 nanyang technol ...
  • 3 篇 natl univ singap...
  • 3 篇 univ malaya fac ...
  • 3 篇 univ chinese aca...
  • 3 篇 univ philippines...
  • 3 篇 huazhong univ sc...
  • 3 篇 tongji univ dept...
  • 2 篇 iflytek iflytek ...

作者

  • 12 篇 pal umapada
  • 10 篇 bai xiang
  • 9 篇 jin lianwen
  • 6 篇 yao cong
  • 6 篇 lu shijian
  • 6 篇 luo canjie
  • 6 篇 shivakumara pala...
  • 6 篇 qiao zhi
  • 5 篇 liu cheng-lin
  • 5 篇 lu yue
  • 5 篇 wang wei
  • 5 篇 xie hongtao
  • 4 篇 zhang yongdong
  • 4 篇 zhou yu
  • 4 篇 wang yuxin
  • 4 篇 wang peng
  • 3 篇 wang chunheng
  • 3 篇 wang jing
  • 3 篇 saluja rohit
  • 3 篇 bai jinfeng

语言

  • 275 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=Scene Text Recognition"
279 条 记 录,以下是51-60 订阅
排序:
Improving scene text recognition with Counting-Aware Contrastive Learning and Attention Alignment  7th
Improving Scene Text Recognition with Counting-Aware Contras...
收藏 引用
7th Chinese Conference on Pattern recognition and Computer Vision
作者: Yang, JunJie Zhoul, Bo Zhu, Anna Wuhan Univ Technol Sch Comp Sci & Artificial Intelligence Wuhan Hubei Peoples R China Wuhan Univ Technol Chongqing Res Inst Chongqing Peoples R China
Contrastive learning for scene text recognition (STR) task greatly relieve the problem of relying on large scale of synthetic data or labeled data for training. Most of previous STR method using contrastive learning a... 详细信息
来源: 评论
Context-Aware Edge-Cloud Collaborative scene text recognition
Context-Aware Edge-Cloud Collaborative Scene Text Recognitio...
收藏 引用
International Conference on Computing, Networking and Communications (ICNC)
作者: Zhang, Puning Liu, Changfeng Wang, Honggang Wu, Dapeng Wang, Ruyan Zou, Hong Chongqing Univ Posts & Telecommun Sch Commun & Informat Engn Chongqing Peoples R China Key Lab Chongqing Educ Commiss China Adv Network & Intelligent Connect Technol Chongqing Peoples R China Chongqing Key Lab Ubiquitous Sensing & Networking Chongqing Peoples R China Yeshiva Univ Katz Sch Sci & Hlth New York NY USA
scene text recognition can extract key information in the image to enable the machine to understand the semantics contained in the image, which can also play a vital role in tasks such as video understanding or video ... 详细信息
来源: 评论
EMU: Effective Multi-Hot Encoding Net for Lightweight scene text recognition With a Large Character Set
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第8期32卷 5374-5385页
作者: Li, Bingcong Tang, Xin Qi, Xianbiao Chen, Yihao Li, Chun-Guang Xiao, Rong Ping An Property & Casualty Insurance Co Visual Comp Grp Shenzhen 518033 Peoples R China Int Digital Econ Acad Shenzhen 518033 Peoples R China Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing 100876 Peoples R China
Deploying a lightweight deep model for scene text recognition task on mobile devices has great commercial value. However, the conventional softmax-based one-hot classification module becomes a cumbersome obstacle when... 详细信息
来源: 评论
PETR: Rethinking the Capability of Transformer-Based Language Model in scene text recognition
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 5585-5598页
作者: Wang, Yuxin Xie, Hongtao Fang, Shancheng Xing, Mengting Wang, Jing Zhu, Shenggao Zhang, Yongdong Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230026 Peoples R China Baidu Intelligent Cloud Chengdu 610021 Peoples R China Huawei Cloud Shenzhen 518129 Peoples R China
The exploration of linguistic information promotes the development of scene text recognition task. Benefiting from the significance in parallel reasoning and global relationship capture, transformer-based language mod... 详细信息
来源: 评论
CarveNet: a channel-wise attention-based network for irregular scene text recognition
收藏 引用
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND recognition 2022年 第3期25卷 177-186页
作者: Wu, Guibin Zhang, Zheng Xiong, Yongping Beijing Univ Posts & Telecommun State Key Lab Switching & Networking Technol Beijing 100876 Peoples R China
Although it has achieved considerable progress in recent years, recognizing irregular text in natural scene is still a challenging problem due to the distortion and background interference. The prior works use either ... 详细信息
来源: 评论
Arbitrary-Shaped scene text recognition with Deformable Ensemble Attention  27th
Arbitrary-Shaped Scene Text Recognition with Deformable Ens...
收藏 引用
27th International Conference on Pattern recognition, ICPR 2024
作者: Xu, Shuo Zhuang, Zeming Li, Mingjun Su, Feng State Key Laboratory for Novel Software Technology Nanjing University 163 Xianlin Road Nanjing China
scene text recognition (STR) is a challenging task that aims to automatically localize and recognize text in varied natural scenes. Although the performance of STR methods has been significantly improved, the STR prob... 详细信息
来源: 评论
An extended attention mechanism for scene text recognition
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2022年 203卷
作者: Xiao, Zheng Nie, Zhenyu Song, Chao Chronopoulos, Anthony Theodore Hunan Univ Coll Informat Sci & Engn Changsha Peoples R China Univ Texas Dept Comp Sci San Antonio TX 78249 USA Univ Patras Comp Engn & Informat Rion 26500 Greece
scene text recognition (STR) refers to obtaining text information from natural text images. The task is more challenging than the optical character recognition(OCR) due to the variability of scenes. Attention mechanis... 详细信息
来源: 评论
Fine-grained Pseudo Labels for scene text recognition  23
Fine-grained Pseudo Labels for Scene Text Recognition
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Li, Xiaoyu Chen, Xiaoxue Huang, Zuming Xie, Lele Chen, Jingdong Yang, Ming Ant Grp Hangzhou Peoples R China
Pseudo-Labeling based semi-supervised learning has shown promising advantages in scene text recognition (STR). Most of them usually use a pre-trained model to generate sequence-level pseudo labels for text images and ... 详细信息
来源: 评论
IndicSTR12: A Dataset for Indic scene text recognition  17th
IndicSTR12: A Dataset for Indic Scene Text Recognition
收藏 引用
17th International Conference on Document Analysis and recognition Workshop (ICDAR)
作者: Lunia, Harsh Mondal, Ajoy Jawahar, C., V Int Inst Informat Technol Ctr Vis Informat Technol Hyderabad 500032 India
The importance of scene text recognition (STR) in today's increasingly digital world cannot be overstated. Given the significance of STR, data-intensive deep learning approaches that auto-learn feature mappings ha... 详细信息
来源: 评论
A Comprehensive Study of scene text recognition in scene text Image Super-Resolution with Parametric Frameworks
A Comprehensive Study of Scene Text Recognition in Scene Tex...
收藏 引用
2024 IEEE International Conference on Consumer Electronics, ICCE 2024
作者: Viriyavisuthisakul, Supatta Sanguansat, Parinya Yamasaki, Toshihiko Japan Advanced Institute of Information Technology School of Information Science Nomi Japan Faculty of Engineering and Technology Panyapiwat Institute of Management Nonthaburi Thailand The University of Tokyo Department of Information and Communication Engineering Tokyo Japan
scene text recognition (STR) is a technique to detect and recognize text in images. Predicting text in real-world scene images is challenging due to various uncontrollable environmental factors. State-of-the-art text ... 详细信息
来源: 评论