咨询与建议

限定检索结果

文献类型

  • 85 篇 会议
  • 55 篇 期刊文献
  • 3 篇 学位论文

馆藏范围

  • 143 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 135 篇 工学
    • 111 篇 软件工程
    • 102 篇 计算机科学与技术...
    • 29 篇 电气工程
    • 7 篇 控制科学与工程
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 网络空间安全
  • 7 篇 理学
    • 3 篇 生物学
    • 2 篇 数学
    • 1 篇 系统科学
  • 5 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 143 篇 search-based sof...
  • 16 篇 genetic algorith...
  • 12 篇 test case genera...
  • 12 篇 software testing
  • 11 篇 genetic algorith...
  • 10 篇 test data genera...
  • 10 篇 automated test g...
  • 9 篇 crash reproducti...
  • 7 篇 automated crash ...
  • 7 篇 cyber-physical s...
  • 6 篇 evolutionary alg...
  • 6 篇 machine learning
  • 5 篇 test case select...
  • 5 篇 model-based test...
  • 5 篇 empirical softwa...
  • 5 篇 regression testi...
  • 5 篇 defect predictio...
  • 5 篇 test case priori...
  • 4 篇 search-based sof...
  • 4 篇 metaheuristics

机构

  • 19 篇 delft univ techn...
  • 5 篇 univ luxembourg ...
  • 4 篇 univ ottawa otta...
  • 3 篇 oakland univ roc...
  • 3 篇 univ fed goias i...
  • 3 篇 delft university...
  • 3 篇 blekinge inst te...
  • 3 篇 univ luxembourg ...
  • 3 篇 chalmers gothenb...
  • 3 篇 monash univ fac ...
  • 2 篇 blekinge institu...
  • 2 篇 univ sheffield d...
  • 2 篇 johannes kepler ...
  • 2 篇 univ gothenburg ...
  • 2 篇 malardalen univ ...
  • 2 篇 tianjin univ col...
  • 2 篇 guru jambheshwar...
  • 2 篇 qra corp halifax...
  • 2 篇 chinese acad sci...
  • 2 篇 univ york dept c...

作者

  • 16 篇 panichella annib...
  • 12 篇 nejati shiva
  • 12 篇 van deursen arie
  • 12 篇 derakhshanfar po...
  • 11 篇 devroey xavier
  • 9 篇 briand lionel c.
  • 9 篇 zaidman andy
  • 8 篇 feldt robert
  • 7 篇 olsthoorn mitche...
  • 6 篇 marculescu bogda...
  • 6 篇 aleti aldeida
  • 6 篇 arcuri andrea
  • 5 篇 perera anjana
  • 5 篇 torkar richard
  • 5 篇 poulding simon
  • 4 篇 turhan burak
  • 4 篇 zhang man
  • 4 篇 menghi claudio
  • 4 篇 soltani mozhan
  • 4 篇 fredericks erik ...

语言

  • 142 篇 英文
  • 1 篇 其他
检索条件"主题词=Search-based Software Testing"
143 条 记 录,以下是91-100 订阅
排序:
Deeper at the SBST 2021 Tool Competition: ADAS testing Using Multi-Objective search  14
Deeper at the SBST 2021 Tool Competition: ADAS Testing Using...
收藏 引用
14th IEEE/ACM International Workshop on search-based software testing (SBST)
作者: Moghadam, Mahshid Helali Borg, Markus Mousavirad, Seyed Jalaleddin RISE Res Inst Sweden Gothenburg Sweden Malardalen Univ Vasteras Sweden Hakim Sabzevari Univ Dept Comp Engn Sabzevar Iran
Deeper is a simulation-based test generator that uses an evolutionary process, i.e., an archive-based NSGA-II augmented with a quality population seed, for generating test cases to test a deep neural network-based lan... 详细信息
来源: 评论
Adding Contextual Guidance to the Automated search for Probabilistic Test Profiles
Adding Contextual Guidance to the Automated Search for Proba...
收藏 引用
7th IEEE International Conference on software testing, Verification and Validation (ICST)
作者: Poulding, Simon Waeselynck, Helene Univ York Dept Comp Sci York YO10 5DD N Yorkshire England Univ Toulouse LAAS CNRS Toulouse France
Statistical testing is a probabilistic approach to test data generation that has been demonstrated to be very effective at revealing faults. Its premise is to compensate for the imperfect connection between coverage c... 详细信息
来源: 评论
Syntest-JavaScript: Automated Unit-Level Test Case Generation for JavaScript  17
Syntest-JavaScript: Automated Unit-Level Test Case Generatio...
收藏 引用
17th IEEE/ACM International Workshop on search-based and Fuzz testing (SBFT)
作者: Olsthoorn, Mitchell Stallenberg, Dimitri Panichella, Annibale Delft Univ Technol Delft Netherlands
Over the last decades, various tools (e.g., AUSTIN and EvoSuite) have been developed to automate the process of unit-level test case generation. Most of these tools are designed for statically-typed languages, such as... 详细信息
来源: 评论
Multi-Objective White-Box Test Input Selection for Deep Neural Network Model Enhancement  34
Multi-Objective White-Box Test Input Selection for Deep Neur...
收藏 引用
34th IEEE International Symposium on software Reliability Engineering (ISSRE)
作者: Guo, Hongjing Tao, Chuanqi Huang, Zhiqiu Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing Peoples R China
To reveal incorrect behaviors and improve the quality of DNN models through testing, a commonly used approach is to collect massive test inputs and manually label them for model optimization. However, it is labor-inte... 详细信息
来源: 评论
Variable Strength Combinatorial Test Data Generation Using Enhanced Bird Swarm Algorithm  19
Variable Strength Combinatorial Test Data Generation Using E...
收藏 引用
19th IEEE/ACIS International Conference on software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)
作者: Cai, Lizhi Zhang, Yang Ji, Weijia East China Univ Sci & Technol Sch Informat Sci & Engineer Shanghai Peoples R China Shanghai Dev Ctr Comp Software Technol Lab Comp Software Testing & Evaluating Shanghai Peoples R China
combinatorial testing is an effective black box testing technique for the system with large numbers of parameters and their values. However, for significantly complex and key systems, combinatorial testing still owns ... 详细信息
来源: 评论
Commonality-Driven Unit Test Generation  12th
Commonality-Driven Unit Test Generation
收藏 引用
12th International Symposium on search-based software Engineering (SSBSE)
作者: Evers, Bjorn Derakhshanfar, Pouria Devroey, Xavier Zaidman, Andy Delft Univ Technol Delft Netherlands
Various search-based test generation techniques have been proposed to automate the generation of unit tests fulfilling different criteria (e.g., line coverage, branch coverage, mutation score, etc.). Despite several a... 详细信息
来源: 评论
GenRL at the SBST 2022 Tool Competition  15
GenRL at the SBST 2022 Tool Competition
收藏 引用
15th search-based software testing Workshop (SBST)
作者: Starace, Luigi Libero Lucio Romdhana, Andrea Di Martino, Sergio Univ Napoli Federico II Naples Italy Univ Genoa Genoa Italy FBK ICT Secur & Trust Unit Trento Italy
GenRL is a Deep Reinforcement Learning-based tool designed to generate test cases for Lane-Keeping Assist Systems. In this paper, we briefly presents GenRL, and summarize the results of its participation in the Cyber-... 详细信息
来源: 评论
Strong Mutation-based Test Data Generation using Hill Climbing  9
Strong Mutation-Based Test Data Generation using Hill Climbi...
收藏 引用
9th IEEE/ACM International Workshop on search-based software testing (SBST)
作者: Souza, Francisco Carlos M. Papadakis, Mike Le Traon, Yves Delamaro, Marcio E. Univ Sao Paulo Comp Syst Dept Sao Carlos SP Brazil Univ Luxembourg Interdisciplinary Ctr Secur Reliabil & Trust Luxembourg Luxembourg
Mutation testing is an effective test criterion for finding faults and assessing the quality of a test suite. Every test criterion requires the generation of test cases, which turns to be a manual and difficult task. ... 详细信息
来源: 评论
An Elitist Evolutionary Algorithm for Automatically Generating Test Data
An Elitist Evolutionary Algorithm for Automatically Generati...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Louzada, Jailton Camilo-Junior, Celso G. Vincenzi, Auri Rodrigues, Cassio Univ Fed Goias Inst Informat Goiania Go Brazil
The development of an effective and efficient method for generating test data is an extremely challenging process which directly impacts the time that could be spent on activities relevant to software testing. Therefo... 详细信息
来源: 评论
Automated Repair of Feature Interaction Failures in Automated Driving Systems  2020
Automated Repair of Feature Interaction Failures in Automate...
收藏 引用
29th ACM SIGSOFT International Symposium on software testing and Analysis (ISSTA)
作者: Ben Abdessalem, Raja Panichella, Annibale Nejati, Shiva Briand, Lionel C. Stifter, Thomas Univ Luxembourg Esch Sur Alzette Luxembourg Delft Univ Technol Delft Netherlands Univ Ottawa Ottawa ON Canada IEE SA Bissen Luxembourg
In the past years, several automated repair strategies have been proposed to fix bugs in individual software programs without any human intervention. There has been, however, little work on how automated repair techni... 详细信息
来源: 评论