The last decade has seen major advances in Wireless Sensor Networks (WSN). The limited amount of resources in WSNs is the main challenge for securing them. Indeed, sensors are inherently small devices with limited emb...
详细信息
The last decade has seen major advances in Wireless Sensor Networks (WSN). The limited amount of resources in WSNs is the main challenge for securing them. Indeed, sensors are inherently small devices with limited embedded storage, processor and battery capacity. The situation is even worse when attackers, with virtually unlimited amount of resources, have direct physical access to sensors. Cryptographic keys are used for authentication, authorization, confidentiality, data integrity, as well as many other security services. Several proposals have been made for key management in WSNs. In this paper, we review some notable key management schemes and propose a new one. The originality of our work lies in two main facts: first, we do not place a master key on all sensors before deploying them as several other proposals did, but we rather place the master key in a subset of sensors;second, the master keys are volatile, i.e., sensors use the master key to bootstrap the system and they delete them shortly after that. Our extensive simulations have shown the efficiency of our approach.
Given the sensitivity of the potential WSN applications and because of resource limitations, key management emerges as a challenging issue for WSNs. One of the main concerns when designing a key management scheme is t...
详细信息
Given the sensitivity of the potential WSN applications and because of resource limitations, key management emerges as a challenging issue for WSNs. One of the main concerns when designing a key management scheme is the network scalability. Indeed, the protocol should support a large number of nodes to enable a large scale deployment of the network. In this paper, we propose a new scalable key management scheme for WSNs which provides a good secure connectivity coverage. For this purpose, we make use of the unital design theory. We show that the basic mapping from unitals to key pre-distribution allows us to achieve high network scalability. Nonetheless, this naive mapping does not guarantee a high key sharing probability. Therefore, we propose an enhanced unital-based key pre-distribution scheme providing high network scalability and good key sharing probability approximately lower bounded by 1 - e(-1) approximate to 0.632. We conduct approximate analysis and simulations and compare our solution to those of existing methods for different criteria such as storage overhead, network scalability, network connectivity, average secure path length and network resiliency. Our results show that the proposed approach enhances the network scalability while providing high secure connectivity coverage and overall improved performance. Moreover, for an equal network size, our solution reduces significantly the storage overhead compared to those of existing solutions.
暂无评论