Central pi-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is conside...
详细信息
Central pi-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is considered a promising strategy but the structure-performance relationship remains unclear. Here, we synthesize two isomeric alkylphenyl-substituted selenopheno[3,2-b]thiophene-based NF-SMAs named mPh4F-TS and mPh4F-ST with different substitution positions, and contrast them with the thieno[3,2-b]thiophene-based analogue, mPh4F-TT. When placing Se atoms at the outer positions of the pi-core, mPh4F-TS shows the most red-shifted absorption and compact molecular stacking. The PM6 : mPh4F-TS devices exhibit excellent absorption, high charge carrier mobility, and reduced energy loss. Consequently, PM6 : mPh4F-TS achieves more balanced photovoltaic parameters and yields an efficiency of 18.05 %, which highlights that precisely manipulating selenium functionalization is a practicable way toward high-efficiency OSCs.
Central π-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is conside...
详细信息
Central π-core engineering of non-fullerene small molecule acceptors (NF-SMAs) is effective in boosting the performance of organic solar cells (OSCs). Especially, selenium (Se) functionalization of NF-SMAs is considered a promising strategy but the structure-performance relationship remains unclear. Here, we synthesize two isomeric alkylphenyl-substituted selenopheno[3,2-b]thiophene-based NF-SMAs named mPh4F-TS and mPh4F-ST with different substitution positions, and contrast them with the thieno[3,2-b]thiophene-based analogue, mPh4F-TT. When placing Se atoms at the outer positions of the π-core, mPh4F-TS shows the most red-shifted absorption and compact molecular stacking. The PM6 : mPh4F-TS devices exhibit excellent absorption, high charge carrier mobility, and reduced energy loss. Consequently, PM6 : mPh4F-TS achieves more balanced photovoltaic parameters and yields an efficiency of 18.05 %, which highlights that precisely manipulating selenium functionalization is a practicable way toward high-efficiency OSCs.
selenium-functionalized starch (Se-starch80) is one of the main functional foods used for selenium supplementation. In traditional agriculture, Se-starch has some deficiencies such as long growth cycle and unstable se...
详细信息
selenium-functionalized starch (Se-starch80) is one of the main functional foods used for selenium supplementation. In traditional agriculture, Se-starch has some deficiencies such as long growth cycle and unstable selenium content that prevent its antioxidant performance. In this study, Se-starch was prepared by the nucleophilic addition between NaSeH and carbon-carbon double bond of octenyl succinic anhydride waxy corn starch ester (OSA starch). Some techniques such as (HNMR)-H-1, XPS, SEM-EDS, XRD and FT-IR were used to characterize the relevant samples and the results showed that the modification did not destroy the starch framework significantly and the catalytic center (negative divalent selenium) was anchored on the starch framework. The intensive distribution of catalytic center on the starch surface and the hydrophobic microenvironments derived from the OSA chains furnished the Se-starch80 with a high GPx-like catalytic activity (initial reaction rate = 3.64 mu M/min). This value was about 1.5 x 10(5) times higher than that of a typical small-molecule GPx mimic (PhSeSePh). In addition, the Se-starch80, without any cytotoxicity, showed a saturated kinetic catalytic behavior that is similar to a typical enzyme. This work exemplifies a biodegradable selenium-functionalized polymer platform for the high-performing GPx mimic.
暂无评论