The dissertation research investigates estimating of power system static and dynamic states (e.g. rotor angle, rotor speed, mechanical power, voltage magnitude, voltage phase angle, mechanical reference point) as well...
详细信息
The dissertation research investigates estimating of power system static and dynamic states (e.g. rotor angle, rotor speed, mechanical power, voltage magnitude, voltage phase angle, mechanical reference point) as well as identification of synchronous generator parameters. The research has two focuses: i. Synchronous generator dynamic model states and parameters estimation using real-time PMU data. ii. Integrate PMU data and conventional measurements to carry out static state estimation. The first part of the work focuses on Phasor Measurement Unit (PMU) data-based synchronous generator states and parameters estimation. In completed work, PMU data-based synchronous generator model identification is carried out using Unscented Kalman Filter (UKF). The identification not only gives the states and parameters related to a synchronous generator swing dynamics but also gives the states and parameters related to turbine-governor and primary and secondary frequency control. PMU measurements of active power and voltage magnitude, are treated as the inputs to the system while voltage phasor angle, reactive power, and frequency measurements are treated as the outputs. UKF-based estimation can be carried out at real-time. Validation is achieved through event play back to compare the outputs of the simplified simulation model and the PMU measurements, given the same input data. Case studies are conducted not only for measurements collected from a simulation model, but also for a set of real-world PMU data. The research results have been disseminated in one published article. In the second part of the research, new state estimation algorithm is designed for static state estimation. The algorithm contains a new solving strategy together with simultaneous bad data detection. The primary challenge in state estimation solvers relates to the inherent non-linearity and non-convexity of measurement functions which requires using of Interior Point algorithm with no guarantee for a global
暂无评论