咨询与建议

限定检索结果

文献类型

  • 14 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 16 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 4 篇 测绘科学与技术
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 石油与天然气工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 网络空间安全
  • 7 篇 理学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 7 篇 医学
    • 7 篇 临床医学
    • 1 篇 特种医学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 24 篇 semi-supervised ...
  • 6 篇 object detection
  • 3 篇 semi-supervised ...
  • 3 篇 predictive model...
  • 3 篇 data models
  • 3 篇 training
  • 2 篇 proposals
  • 2 篇 dense pseudo-lab...
  • 2 篇 optimization
  • 2 篇 contrastive lear...
  • 2 篇 location awarene...
  • 2 篇 remote sensing
  • 2 篇 detectors
  • 2 篇 consistency regu...
  • 1 篇 image enhancemen...
  • 1 篇 object first mix...
  • 1 篇 synthetic apertu...
  • 1 篇 comparative lear...
  • 1 篇 global proposal ...
  • 1 篇 oct b-scan image...

机构

  • 1 篇 univ sci & techn...
  • 1 篇 baidu inc people...
  • 1 篇 jiangnan univ sc...
  • 1 篇 tencent hippocra...
  • 1 篇 northwestern pol...
  • 1 篇 univ chinese aca...
  • 1 篇 xidian univ sch ...
  • 1 篇 beijing inst rem...
  • 1 篇 chinese acad sci...
  • 1 篇 harbin inst tech...
  • 1 篇 space engn univ ...
  • 1 篇 natl univ def te...
  • 1 篇 hangzhou city un...
  • 1 篇 seoul national u...
  • 1 篇 yunnan univ sch ...
  • 1 篇 zhejiang univ co...
  • 1 篇 beijing informat...
  • 1 篇 sun yat sen univ...
  • 1 篇 yunnan prov key ...
  • 1 篇 china ship sci r...

作者

  • 1 篇 guo jing
  • 1 篇 xu xin
  • 1 篇 yang jingyuan
  • 1 篇 li yao
  • 1 篇 xu mingliang
  • 1 篇 liu bo
  • 1 篇 li guanbin
  • 1 篇 zhao jianchun
  • 1 篇 lan shiyong
  • 1 篇 yang yun
  • 1 篇 he mingyi
  • 1 篇 zhang kebei
  • 1 篇 li yanjun
  • 1 篇 wei ziyu
  • 1 篇 wang yuhao
  • 1 篇 chun dayoung
  • 1 篇 shi shuohao
  • 1 篇 wang jian
  • 1 篇 yang xi
  • 1 篇 yu haiyan

语言

  • 24 篇 英文
检索条件"主题词=Semi-Supervised Object Detection"
24 条 记 录,以下是1-10 订阅
排序:
semi-supervised object detection Based on Dense Information Mining from Teacher Model  24
Semi-Supervised Object Detection Based on Dense Information ...
收藏 引用
4th International Conference on Computer, Internet of Things and Control Engineering
作者: Long, Zuwei Li, Jun Univ Sci & Technol China Dept Automat Hefei Peoples R China Univ Sci & Technol China Inst Adv Technol Hefei Peoples R China
Recent advancements in semi-supervised object detection have shown promising results. However, the dense information predictions from the teacher model are often discarded. To address this issue, we propose the Pixel-... 详细信息
来源: 评论
semi-supervised object detection IN REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING
SEMI-SUPERVISED OBJECT DETECTION IN REMOTE SENSING IMAGES BA...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Wang, Yuhao Yao, Lifan Meng, Gang Zhang, Xinye Song, Jiayun Zhang, Haopeng Beihang Univ Sch Astronaut Beijing 102206 Peoples R China Beihang Univ Qingdao Res Inst Shandong 266104 Peoples R China Beijing Inst Remote Sensing Informat Beijing 100011 Peoples R China
The emergence of semi-supervised object detection (SSOD) techniques has led to notable improvements in object detection capabilities by leveraging a restricted quantity of labeled data and a copious amount of unlabele... 详细信息
来源: 评论
A Novel semi-supervised object detection Approach via Scale Rebalancing and Global Proposal Contrast Consistency
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2025年 第1期35卷 232-244页
作者: Liu, Bo Yang, Chengrong Guo, Jing Yang, Yun Yunnan Univ Sch Software Kunming 650504 Peoples R China Yunnan Prov Key Lab Software Engn Kunming 650504 Peoples R China
semi-supervised object detection (SSOD) is a method that uses a small amount of labeled data and a large amount of unlabeled data to improve the performance of object detection. However, existing SSOD methods face the... 详细信息
来源: 评论
DRCO: Dense-Label Refinement and Cross Optimization for semi-supervised object detection
收藏 引用
IEEE ACCESS 2025年 13卷 3572-3582页
作者: Qin, Yunlong Li, Yanjun Ji, Feifan Liu, Yan Wang, Yu Xiang, Ji Hangzhou City Univ Sch Informat & Elect Engn Hangzhou 310015 Peoples R China Zhejiang Univ Coll Control Sci & Engn Hangzhou 310027 Peoples R China Zhejiang Univ Coll Elect Engn Hangzhou 310027 Peoples R China
In semi-supervised object detection (SSOD), the methods based on dense pseudo-labeling bypass complex post-processing while maintaining competitive performance compared to the methods based on sparse pseudo-labeling. ... 详细信息
来源: 评论
A semi-supervised object detection Method for Close Range detection of Spacecraft and Space Debris
收藏 引用
INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES 2025年 第2期26卷 773-784页
作者: Zhang, Huan Zhang, Yang Feng, Qingjuan Zhang, Kebei Beijing Informat Sci & Technol Univ Beijing 100192 Peoples R China Beijing Inst Control Engn Beijing 100094 Peoples R China
With the continuous development of space missions, a large number of artificial objects have been produced and deployed in Earth orbit, and there is an urgent need to equip satellites with the ability to autonomously ... 详细信息
来源: 评论
Elaborate Teacher: Improved semi-supervised object detection With Rich Image Exploiting
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2024年 26卷 11345-11357页
作者: Yang, Xi Zhou, Qiubai Wei, Ziyu Liu, Hong Wang, Nannan Gao, Xinbo Xidian Univ Sch Telecommun Engn State Key Lab Integrated Serv Networks Xian 710071 Peoples R China Fourth Mil Med Univ Dept Biomed Engn Xian 710032 Peoples R China Fourth Mil Med Univ Shaanxi Key Lab Bioelectromagnet Detect & Intellig Xian 710032 Peoples R China Space Engn Univ Space Secur Res Ctr Beijing 101400 Peoples R China Xidian Univ Sch Elect Engn Xian 710071 Peoples R China Chongqing Univ Posts & Telecommun Chongqing Key Lab Image Cognit Chongqing Peoples R China
semi-supervised object detection (SSOD) has shown remarkable results by leveraging image pairs with a teacher-student framework. An excellent strong augmentation method can generate richer images and alleviate the inf... 详细信息
来源: 评论
CREDIBLE TEACHER FOR semi-supervised object detection IN OPEN SCENE  49
CREDIBLE TEACHER FOR SEMI-SUPERVISED OBJECT DETECTION IN OPE...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Zhuang, Jingyu Wang, Kuo Lin, Liang Li, Guanbin Sun Yat Sen Univ Guangzhou Peoples R China Sun Yat Sen Univ Shenzhen Sch Comp Sci & Engn Res Inst Shenzhen Peoples R China
semi-supervised object detection (SSOD) has achieved resounding success by leveraging unlabeled data to improve detection performance. However, in Open Scene semi-supervised object detection (O-SSOD), unlabeled data m... 详细信息
来源: 评论
Dense Pseudo-Labels based semi-supervised object detection for Remote Sensing
Dense Pseudo-Labels based Semi-supervised Object Detection f...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ma, Yongjie Lan, Shiyong Ma, Wei Yin, Xiaoxiao Li, Yao Sichuan Univ Chengdu Peoples R China
Deep-learning-based object detection has recently played an increasingly important role in analyzing geographic spatial information. However, object detection performance is strongly correlated with the quality and qu... 详细信息
来源: 评论
semi-supervised object detection FRAMEWORK WITH object FIRST MIXUP FOR REMOTE SENSING IMAGES
SEMI-SUPERVISED OBJECT DETECTION FRAMEWORK WITH OBJECT FIRST...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Zhang, Ziyu Feng, Zhixi Yang, Shuyuan Xidian Univ Sch Artificial Intelligence Xian 710071 Peoples R China
This paper proposes a Simple semi-supervised object detection framework for Remote Sensing images, which is named SSOD-RS. SSOD-RS contains two parts, improved self-raining and consistency regularization based on stro... 详细信息
来源: 评论
Temporal Self-Ensembling Teacher for semi-supervised object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2022年 24卷 3679-3692页
作者: Chen, Cong Dong, Shouyang Tian, Ye Cao, Kunlin Liu, Li Guo, Yuanhao Keya Med Technol Shenzhen 518116 Peoples R China Cambricon Software Dept Beijing 100010 Peoples R China Tencent Hippocrates Res Lab Shenzhen 518052 Peoples R China Natl Univ Def Technol Coll Syst Engn Changsha 410073 Peoples R China Univ Oulu Ctr Machine Vis & Signal Anal Oulu 90570 Finland Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China
This paper focuses on the semi-supervised object detection (SSOD) which makes good use of unlabeled data to boost performance. We face the following obstacles when adapting the knowledge distillation (KD) framework in... 详细信息
来源: 评论