咨询与建议

限定检索结果

文献类型

  • 14 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 24 篇 工学
    • 16 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 5 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 4 篇 测绘科学与技术
    • 3 篇 软件工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 石油与天然气工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 网络空间安全
  • 7 篇 理学
    • 4 篇 地球物理学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 7 篇 医学
    • 7 篇 临床医学
    • 1 篇 特种医学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 24 篇 semi-supervised ...
  • 6 篇 object detection
  • 3 篇 semi-supervised ...
  • 3 篇 predictive model...
  • 3 篇 data models
  • 3 篇 training
  • 2 篇 proposals
  • 2 篇 dense pseudo-lab...
  • 2 篇 optimization
  • 2 篇 contrastive lear...
  • 2 篇 location awarene...
  • 2 篇 remote sensing
  • 2 篇 detectors
  • 2 篇 consistency regu...
  • 1 篇 image enhancemen...
  • 1 篇 object first mix...
  • 1 篇 synthetic apertu...
  • 1 篇 comparative lear...
  • 1 篇 global proposal ...
  • 1 篇 oct b-scan image...

机构

  • 1 篇 univ sci & techn...
  • 1 篇 baidu inc people...
  • 1 篇 jiangnan univ sc...
  • 1 篇 tencent hippocra...
  • 1 篇 northwestern pol...
  • 1 篇 univ chinese aca...
  • 1 篇 xidian univ sch ...
  • 1 篇 beijing inst rem...
  • 1 篇 chinese acad sci...
  • 1 篇 harbin inst tech...
  • 1 篇 space engn univ ...
  • 1 篇 natl univ def te...
  • 1 篇 hangzhou city un...
  • 1 篇 seoul national u...
  • 1 篇 yunnan univ sch ...
  • 1 篇 zhejiang univ co...
  • 1 篇 beijing informat...
  • 1 篇 sun yat sen univ...
  • 1 篇 yunnan prov key ...
  • 1 篇 china ship sci r...

作者

  • 1 篇 guo jing
  • 1 篇 xu xin
  • 1 篇 yang jingyuan
  • 1 篇 li yao
  • 1 篇 xu mingliang
  • 1 篇 liu bo
  • 1 篇 li guanbin
  • 1 篇 zhao jianchun
  • 1 篇 lan shiyong
  • 1 篇 yang yun
  • 1 篇 he mingyi
  • 1 篇 zhang kebei
  • 1 篇 li yanjun
  • 1 篇 wei ziyu
  • 1 篇 wang yuhao
  • 1 篇 chun dayoung
  • 1 篇 shi shuohao
  • 1 篇 wang jian
  • 1 篇 yang xi
  • 1 篇 yu haiyan

语言

  • 24 篇 英文
检索条件"主题词=Semi-Supervised Object Detection"
24 条 记 录,以下是11-20 订阅
排序:
Not All Classes are Equal: Adaptively Focus-Aware Confidence for semi-supervised object detection  48
Not All Classes are Equal: Adaptively Focus-Aware Confidence...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Zhu, Hui Lu, Yongchun Zhao, Hongyu Zhao, Guoqing Zhao, Xiaofang Chinese Academy of Sciences Institute of Computing Technology China University of Chinese Academy of Sciences China Mashang Consumer Finance Co. Ltd China Institute of Intelligent Computing Technology Chinese Academy of Sciences Suzhou China
semi-supervised object detection (SSOD) is a significant application of semi-supervised learning to further improve object detectors but suffers more seriously from confirmation bias and error accumulation caused by t... 详细信息
来源: 评论
Dynamic balanced teacher: A semi-supervised object detection algorithm for train faults
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 138卷
作者: Sun, Guodong Pan, Xingyu Liang, Qihang Wu, Bo Hubei Univ Technol Sch Mech Engn Wuhan 430068 Peoples R China Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China
Efficient visual fault detection in freight trains is crucial for guaranteeing the safety of rail transportation. At present, deep learning-based methods for diagnosing faults in freight trains necessitate substantial... 详细信息
来源: 评论
Improving Localization for semi-supervised object detection  21st
Improving Localization for Semi-Supervised Object Detection
收藏 引用
21st International Conference on Image Analysis and Processing (ICIAP)
作者: Rossi, Leonardo Karimi, Akbar Prati, Andrea Univ Parma IMP Lab DIA Parma Italy
Nowadays, semi-supervised object detection (SSOD) is a hot topic, since, while it is rather easy to collect images for creating a new dataset, labeling them is still an expensive and time-consuming task. One of the su... 详细信息
来源: 评论
Diverse Learner: Exploring Diverse Supervision for semi-supervised object detection  17th
Diverse Learner: Exploring Diverse Supervision for Semi-supe...
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Li, Linfeng Jiang, Minyue Yu, Yue Zhang, Wei Lin, Xiangru Li, Yingying Tan, Xiao Wang, Jingdong Ding, Errui Baidu Inc Beijing Peoples R China Natl Univ Singapore Singapore Singapore
Current state-of-the-art semi-supervised object detection methods (SSOD) typically adopt the teacher-student framework featured with pseudo labeling and Exponential Moving Average (EMA). Although the performance is de... 详细信息
来源: 评论
Dense Teacher: Dense Pseudo-Labels for semi-supervised object detection  1
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Zhou, Hongyu Ge, Zheng Liu, Songtao Mao, Weixin Li, Zeming Yu, Haiyan Sun, Jian MEGVII Technol Beijing Peoples R China Waseda Univ Tokyo Japan Harbin Inst Technol Harbin Peoples R China
To date, the most powerful semi-supervised object detectors (SS-OD) are based on pseudo-boxes, which need a sequence of post-processing with fine-tuned hyper-parameters. In this work, we propose replacing the sparse p... 详细信息
来源: 评论
Lesion Localization in OCT by semi-supervised object detection  22
Lesion Localization in OCT by Semi-Supervised Object Detecti...
收藏 引用
ACM International Conference on Multimedia Retrieval (ICMR)
作者: Wu, Yue Zhou, Yang Zhao, Jianchun Yang, Jingyuan Yu, Weihong Chen, Youxin Li, Xirong Renmin Univ China Key Lab DEKE Beijing Peoples R China Beijing Visionary Intelligence Ltd Vistel AI Lab Beijing Peoples R China Peking Union Med Coll Hosp Dept Ophthalmol Beijing Peoples R China
Over 300 million people worldwide are affected by various retinal diseases. By noninvasive Optical Coherence Tomography (OCT) scans, a number of abnormal structural changes in the retina, namely retinal lesions, can b... 详细信息
来源: 评论
semi-supervised Underwater object detection Using Grid Marker-Assisted Image Enhancement  17th
Semi-supervised Underwater Object Detection Using Grid Marke...
收藏 引用
17th International Conference on Intelligent Robotics and Applications
作者: Xia, Caixia Zhou, Wenzhang Zhang, Caiyu Fan, Baojie Nanjing Univ Posts & Telecommun Nanjing 210003 Peoples R China Univ Chinese Acad Sci Beijing 101408 Peoples R China
semi-supervised underwater object detection aims to obtain high-quality pseudo-labeled samples from an amount of unlabeled data, addressing the issue of missing data labels in underwater environments. In this work, we... 详细信息
来源: 评论
DENSITY-GUIDED DENSE PSEUDO LABEL SELECTION FOR semi-supervised ORIENTED object detection  31
DENSITY-GUIDED DENSE PSEUDO LABEL SELECTION FOR SEMI-SUPERVI...
收藏 引用
2024 International Conference on Image Processing
作者: Zhao, Tong Fang, Qiang Shi, Shuohao Xu, Xin Natl Univ Def Technol Coll Intelligence Sci & Technol Changsha Peoples R China
Recently, dense pseudo-label, which directly selects pseudo labels from the original output of the teacher model without any complicated post-processing steps, has received considerable attention in semi-supervised ob... 详细信息
来源: 评论
semi-supervised Method for Underwater object detection Algorithm Based on Improved YOLOv8
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第3期15卷 1065-1065页
作者: Xu, Siyi Wang, Jian Sang, Qingbing Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi 214122 Peoples R China Jiangnan Univ Engn Res Ctr Intelligent Technol Healthcare Minist Educ Wuxi 214122 Peoples R China China Ship Sci Res Ctr Wuxi 214082 Peoples R China
Deep learning-based object detection technology is rapidly developing, and underwater object detection, an important subcategory, plays a crucial role in various fields such as underwater structure repair and maintena... 详细信息
来源: 评论
SAR-CDSS: A semi-supervised Cross-Domain object detection from Optical to SAR Domain
收藏 引用
REMOTE SENSING 2024年 第6期16卷 940页
作者: Luo, Cheng Zhang, Yueting Guo, Jiayi Hu, Yuxin Zhou, Guangyao You, Hongjian Ning, Xia Aerosp Informat Res Inst Chinese Acad Sci Beijing 100094 Peoples R China Chinese Acad Sci Key Lab Technol Geospatial Informat Proc & Applica Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China
The unique imaging modality of synthetic aperture radar (SAR) has posed significant challenges for object detection, making it more complex to acquire and interpret than optical images. Recently, numerous studies have... 详细信息
来源: 评论