咨询与建议

限定检索结果

文献类型

  • 6 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7 篇 工学
    • 6 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 2 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 1 篇 软件工程
  • 3 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 8 篇 semi-supervised ...
  • 2 篇 fault diagnosis
  • 2 篇 feature extracti...
  • 1 篇 fast independent...
  • 1 篇 uncertainty quan...
  • 1 篇 sparse autoencod...
  • 1 篇 random vector fu...
  • 1 篇 deep learning
  • 1 篇 deep neural netw...
  • 1 篇 task analysis
  • 1 篇 health feature s...
  • 1 篇 power transforme...
  • 1 篇 chemical gas cla...
  • 1 篇 autoencoder
  • 1 篇 dissolved gas an...
  • 1 篇 logistic regress...
  • 1 篇 quality predicti...
  • 1 篇 decoding
  • 1 篇 fairness
  • 1 篇 chemical warfare...

机构

  • 1 篇 agcy def dev adv...
  • 1 篇 microsoft corp r...
  • 1 篇 chongqing univ c...
  • 1 篇 intesa sanpaolo ...
  • 1 篇 johannes gutenbe...
  • 1 篇 northwestern pol...
  • 1 篇 korea elect powe...
  • 1 篇 anhui univ sch c...
  • 1 篇 northeastern uni...
  • 1 篇 state key lab nu...
  • 1 篇 taiyuan univ sci...
  • 1 篇 korea adv inst s...
  • 1 篇 xinjiang univ in...
  • 1 篇 seoul natl univ ...
  • 1 篇 onepredict inc s...
  • 1 篇 univ turin dept ...
  • 1 篇 inrae montpellie...
  • 1 篇 xinjiang univ co...
  • 1 篇 zhejiang univ st...

作者

  • 1 篇 kim daeil
  • 1 篇 ren haijun
  • 1 篇 esposito roberto
  • 1 篇 wu haiyan
  • 1 篇 nam hyunwoo
  • 1 篇 li xianmin
  • 1 篇 jo soo-ho
  • 1 篇 chang dong eui
  • 1 篇 yang shuyi
  • 1 篇 zheng chun-hou
  • 1 篇 jang hee-deok
  • 1 篇 yang haomin
  • 1 篇 zhao jian-ping
  • 1 篇 xue hansheng
  • 1 篇 li mingjie
  • 1 篇 wang ziyang
  • 1 篇 li xueming
  • 1 篇 luo xiaoyi
  • 1 篇 han yeongmin
  • 1 篇 wen chaoyao

语言

  • 7 篇 英文
  • 1 篇 中文
检索条件"主题词=Semi-supervised autoencoder"
8 条 记 录,以下是1-10 订阅
排序:
scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder
收藏 引用
METHODS 2022年 208卷 66-74页
作者: Zhao, Jian-Ping Hou, Tong-Shuai Su, Yansen Zheng, Chun-Hou Xinjiang Univ Coll Math & Syst Sci Urumqi Peoples R China Xinjiang Univ Inst Math & Phys Urumqi Peoples R China Anhui Univ Sch Comp Sci & Technol Hefei Peoples R China
Background: Single cell sequencing is a technology for high-throughput sequencing analysis of genome, tran-scriptome and epigenome at the single cell level. It can improve the shortcomings of traditional methods, reve... 详细信息
来源: 评论
semi-supervised autoencoder for Chemical Gas Classification with FTIR Spectrum
收藏 引用
SENSORS 2024年 第11期24卷 3601页
作者: Jang, Hee-Deok Kwon, Seokjoon Nam, Hyunwoo Chang, Dong Eui Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea Agcy Def Dev Adv Def Sci & Technol Res Inst Chem Bio Technol Ctr Daejeon 34186 South Korea
Chemical warfare agents pose a serious threat due to their extreme toxicity, necessitating swift the identification of chemical gases and individual responses to the identified threats. Fourier transform infrared (FTI... 详细信息
来源: 评论
semi-supervised autoencoder : A Joint Approach of Representation And Classification  7
Semi-Supervised Autoencoder : A Joint Approach of Representa...
收藏 引用
7th International Conference on Computational Intelligence and Communication Networks (CICN)
作者: Wu Haiyan Yang Haomin Li Xueming Ren Haijun Chongqing Univ Coll Comp Sci Chongqing Peoples R China
Recent years have witnessed the significant success of representation learning and deep learning in various prediction and recognition applications. Most of these previous studies adopt the two-phase procedures, namel... 详细信息
来源: 评论
A semi-supervised autoencoder With an Auxiliary Task (SAAT) for Power Transformer Fault Diagnosis Using Dissolved Gas Analysis
收藏 引用
IEEE ACCESS 2020年 8卷 178295-178310页
作者: Kim, Sunuwe Jo, Soo-Ho Kim, Wongon Park, Jongmin Jeong, Jingyo Han, Yeongmin Kim, Daeil Youn, Byeng Dong Seoul Natl Univ Dept Mech & Aerosp Engn Seoul 08826 South Korea Korea Elect Power Corp KEPCO Dept Transmiss & Substn Operat Naju 58322 South Korea OnePredict Inc Seoul 08826 South Korea
This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The health feature space gene... 详细信息
来源: 评论
Ironmaking process modeling uncertainty quantification via conformal prediction based on random vector functional link networks
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2025年 123卷
作者: Zhou, Ping Wen, Chaoyao Zhao, Peng Li, Mingjie Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110819 Peoples R China Taiyuan Univ Sci & Technol Sch Elect Informat Engn Taiyuan 030024 Peoples R China
For real-world industrial system modeling, dynamic stochastic errors inevitably exist in data- driven deterministic predictions (i.e., point predictions). The uncertainty of such prediction results directly affects va... 详细信息
来源: 评论
FairSwiRL: fair semi-supervised classification with representation learning
收藏 引用
MACHINE LEARNING 2023年 第9期112卷 3051-3076页
作者: Yang, Shuyi Cerrato, Mattia Ienco, Dino Pensa, Ruggero G. Esposito, Roberto Univ Turin Dept Comp Sci Turin Italy Johannes Gutenberg Univ Mainz Inst Informat Mainz Germany INRAE Montpellier UMR TETIS LIRMM Montpellier France Intesa Sanpaolo Data Sci & Artificial Intelligence Turin Italy
semi-supervised learning has shown its potential in many real-world applications where only few labeled examples are available. However, when some fairness constraints need to be satisfied, semi-supervised classificat... 详细信息
来源: 评论
Discriminant autoencoder for feature extraction in fault diagnosis
收藏 引用
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2019年 192卷 103814-000页
作者: Luo, Xiaoyi Li, Xianmin Wang, Ziyang Liang, Jun Zhejiang Univ State Key Lab Ind Control Technol Hangzhou Zhejiang Peoples R China State Key Lab Nucl Power Safety Monitoring Techno Shenzhen Guangdong Peoples R China
Nowadays, some traditional autoencoders and their extensions have been widely applied in data-driven fault diagnosis for feature extraction. However, because of the fact that traditional autoencoders could not make us... 详细信息
来源: 评论
Integrating Multi-Network Topology via Deep semi-supervised Node Embedding  19
Integrating Multi-Network Topology via Deep Semi-supervised ...
收藏 引用
28th ACM International Conference on Information and Knowledge Management (CIKM)
作者: Xue, Hansheng Peng, Jiajie Li, Jiying Shang, Xuequn Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China Microsoft Corp Redmond WA 98052 USA
Node Embedding, which uses low-dimensional non-linear feature vectors to represent nodes in the network, has shown a great promise, not only because it is easy-to-use for downstream tasks, but also because it has achi... 详细信息
来源: 评论