咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 15 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 生物工程
  • 5 篇 理学
    • 3 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 医学

主题

  • 20 篇 semi-supervised ...
  • 3 篇 support vector m...
  • 2 篇 semi-supervised ...
  • 2 篇 path following a...
  • 2 篇 balancing constr...
  • 2 篇 incremental lear...
  • 2 篇 dc programming
  • 1 篇 branch-and-bound...
  • 1 篇 identity replica...
  • 1 篇 quadratic kernel...
  • 1 篇 semi-supervised
  • 1 篇 precision boring...
  • 1 篇 mislabeled infor...
  • 1 篇 spline unction
  • 1 篇 smooth piecewise...
  • 1 篇 cluster kernel f...
  • 1 篇 chaotic catfish ...
  • 1 篇 gaussian approxi...
  • 1 篇 fault classifica...
  • 1 篇 cuckoo search al...

机构

  • 2 篇 china agr univ c...
  • 1 篇 china univ min &...
  • 1 篇 dongbei univ fin...
  • 1 篇 xidian univ dept...
  • 1 篇 univ pittsburgh ...
  • 1 篇 xi an jiao tong ...
  • 1 篇 shanghai univ pe...
  • 1 篇 guangdong univ f...
  • 1 篇 northwestern uni...
  • 1 篇 china univ min &...
  • 1 篇 univ macau dept ...
  • 1 篇 north carolina s...
  • 1 篇 jiangsu univ sch...
  • 1 篇 simon fraser uni...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 mohamed bin zaye...
  • 1 篇 changsha univ sc...
  • 1 篇 sichuan univ sci...
  • 1 篇 xian inst posts ...
  • 1 篇 yunnan univ sch ...

作者

  • 3 篇 gu bin
  • 2 篇 huang heng
  • 2 篇 bai yanqin
  • 2 篇 yang liming
  • 2 篇 luo jian
  • 1 篇 yin zhixian
  • 1 篇 zhang xiekai
  • 1 篇 yu shuyang
  • 1 篇 pei jian
  • 1 篇 zhu changjian
  • 1 篇 chen haiyan
  • 1 篇 yang yun
  • 1 篇 yang jun
  • 1 篇 feng xia
  • 1 篇 gao zhengqing
  • 1 篇 wang shuai
  • 1 篇 zhang le-you
  • 1 篇 xia ping
  • 1 篇 wang laisheng
  • 1 篇 yan xin

语言

  • 19 篇 英文
  • 1 篇 其他
检索条件"主题词=Semi-supervised support vector machine"
20 条 记 录,以下是1-10 订阅
排序:
An Enhanced semi-supervised support vector machine Algorithm for Spectral-Spatial Hyperspectral Image Classification
收藏 引用
PATTERN RECOGNITION AND IMAGE ANALYSIS 2024年 第1期34卷 199-211页
作者: He, Ziping Xia, Kewen Zhang, Jiangnan Wang, Sijie Yin, Zhixian Changsha Univ Sci & Technol Sch Comp & Commun Engn Changsha 410114 Peoples R China Hebei Univ Technol Sch Elect & Informat Engn Tianjin 300401 Peoples R China
Hyperspectral image classification has become an important issue in remote sensing due to the significant amount of spectral information in HSI. The costly and time-consuming annotation task of HSIs makes the number o... 详细信息
来源: 评论
A P-ADMM for sparse quadratic kernel-free least squares semi-supervised support vector machine
收藏 引用
NEUROCOMPUTING 2018年 306卷 37-50页
作者: Zhan, Yaru Bai, Yanqin Zhang, Wei Ying, Shihui Shanghai Univ Dept Math Shanghai 200444 Peoples R China
In this paper, we propose a sparse quadratic kernel-free least squares semi-supervised support vector machine model by adding an L-1 norm regularization term to the objective function and using the least squares metho... 详细信息
来源: 评论
New Incremental Learning Algorithm for semi-supervised support vector machine  18
New Incremental Learning Algorithm for Semi-Supervised Suppo...
收藏 引用
24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
作者: Gu, Bin Yuan, Xiao-Tong Chen, Songcan Huang, Heng Univ Pittsburgh Dept Elect & Comp Engn Pittsburgh PA 15260 USA Nanjing Univ Informat Sci Technol Sch Informat & Control Nanjing Jiangsu Peoples R China Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing Jiangsu Peoples R China
semi-supervised learning is especially important in data mining applications because it can make use of plentiful unlabeled data to train the high-quality learning models. semi-supervised support vector machine (S3VM)... 详细信息
来源: 评论
An overview on semi-supervised support vector machine
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2017年 第5期28卷 969-978页
作者: Ding, Shifei Zhu, Zhibin Zhang, Xiekai China Univ Min & Technol Sch Comp Sci & Technol Xuzhou 221116 Peoples R China China Univ Min & Technol Jiangsu Key Lab Mine Mech & Elect Equipment Xuzhou 221116 Peoples R China
support vector machine (SVM) is a machine learning method based on statistical learning theory. It has a lot of advantages, such as solid theoretical foundation, global optimization, the sparsity of the solution, nonl... 详细信息
来源: 评论
A New Classification Method Based on semi-supervised support vector machine  1
A New Classification Method Based on Semi-supervised Support...
收藏 引用
1st International Conference on Human Centered Computing (HCC)
作者: Jiang, Weijin Yao Lina Jiang Xinjun Xu Yuhui Natl Univ Def Technol Sch Comp Changsha Hunan Peoples R China Hunan Univ Commerce Sch Comp & Informat Engn Changsha Hunan Peoples R China Hunan Radio & TV Univ Dept Comp Changsha 410005 Hunan Peoples R China
semi-supervised learning using tag vector machine is a relatively new method of data classification and label-free. semi-supervised support vector machines model the objective function is not smooth and fast optimizat... 详细信息
来源: 评论
Towards Practical Large Scale Non-Linear semi-supervised Learning with Balancing Constraints  22
Towards Practical Large Scale Non-Linear Semi-Supervised Lea...
收藏 引用
31st ACM International Conference on Information and Knowledge Management (CIKM)
作者: Gao, Zhengqing Wu, Huimin Takac, Martin Gu, Bin Mohamed bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates Nanjing Univ Informat Sci & Technol Nanjing Peoples R China
semi-supervised support vector machine ((SVM)-V-3) is one of the most popular methods for semi-supervised learning, which can make full use of plentiful, easily accessible unlabeled data. Balancing constraint is norma... 详细信息
来源: 评论
semi-supervised Learning-enabled Two-stage Framework for Cooperative Spectrum Sensing Against SSDF Attack
Semi-supervised Learning-enabled Two-stage Framework for Coo...
收藏 引用
IEEE Wireless Communications and Networking Conference (IEEE WCNC)
作者: Chen, Ze Wu, Jun Bao, Jianrong Hangzhou Dianzi Univ Sch Commun Engn Hangzhou Zhejiang Peoples R China Southeast Univ Natl Mobile Commun Res Lab Nanjing Jiangsu Peoples R China Sichuan Univ Sci & Engn Artificial Intelligence Key Lab Sichuan Prov Yibin Sichuan Peoples R China Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou Zhejiang Peoples R China
Cooperative spectrum sensing (CSS) has been considered as a powerful approach to improve the utilization of scarce radio spectrum resources. However, spectrum sensing data falsification (SSDF) can hugely degrade the a... 详细信息
来源: 评论
Least-Squares support vector machine for semi-supervised Multi-Tasking  16
Least-Squares Support Vector Machine for Semi-Supervised Mul...
收藏 引用
16th IEEE/ACIS International Conference on Software Engineering Research, Management and Applications (SERA)
作者: Jia, Xuekuo Wang, Shipu Yang, Yun Yunnan Univ Sch Software Kunming Yunnan Peoples R China
The semi-supervised multi-tasking using least-squares support vector machine can further improve performance by using related information of related tasks, and it inherits the advantages of high training speed and hig... 详细信息
来源: 评论
Tackle Balancing Constraint for Incremental semi-supervised support vector Learning  19
Tackle Balancing Constraint for Incremental Semi-Supervised ...
收藏 引用
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD)
作者: Yu, Shuyang Gu, Bin Ning, Kunpeng Chen, Haiyan Pei, Jian Huang, Heng Northeastern Univ Boston MA 02115 USA JD Finance America Corp Mountain View CA USA Nanjing Univ Aeronaut & Astronaut Nanjing Jiangsu Peoples R China Simon Fraser Univ JD Com Burnaby BC Canada Univ Pittsburgh JD Finance Amer Corp Pittsburgh PA 15260 USA
semi-supervised support vector machine ((SVM)-V-3) is one of the most popular methods for semi-supervised learning. To avoid the trivial solution of classifying all the unlabeled examples to a same class, balancing co... 详细信息
来源: 评论
A winch fault classification algorithm based on cluster kernel semi-supervised support vector machine
A winch fault classification algorithm based on cluster kern...
收藏 引用
2nd International Conference on Advanced Design and Manufacturing Engineering (ADME 2012)
作者: Shi, Xianxin Zhao, Zhongxiang Zhu, Changjian Kong, Xiaoxiao Chai, Junfei Li, Lijing Zhao, Huan Xuzhou Heavy Machinery CO LTD Xuzhou 221004 Jiangsu Peoples R China
A cluster kernel semi-supervised support vector machine ((CKSVM)-V-3) based on spectral cluster algorithm is proposed and applied in winch fault classification in this paper. The spectral clustering method is used to ... 详细信息
来源: 评论