咨询与建议

限定检索结果

文献类型

  • 76 篇 会议
  • 62 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 139 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 135 篇 工学
    • 94 篇 计算机科学与技术...
    • 51 篇 电气工程
    • 22 篇 信息与通信工程
    • 18 篇 软件工程
    • 14 篇 控制科学与工程
    • 9 篇 交通运输工程
    • 6 篇 石油与天然气工程
    • 5 篇 测绘科学与技术
    • 4 篇 动力工程及工程热...
    • 4 篇 土木工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 船舶与海洋工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 安全科学与工程
    • 1 篇 光学工程
  • 28 篇 理学
    • 19 篇 物理学
    • 3 篇 地球物理学
    • 2 篇 数学
    • 2 篇 化学
    • 1 篇 地理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
  • 23 篇 医学
    • 19 篇 临床医学
    • 3 篇 基础医学(可授医学...
  • 9 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 139 篇 sequence-to-sequ...
  • 18 篇 deep learning
  • 17 篇 attention mechan...
  • 12 篇 speech synthesis
  • 10 篇 natural language...
  • 8 篇 speech recogniti...
  • 7 篇 transformer
  • 7 篇 attention
  • 6 篇 training
  • 5 篇 transformers
  • 5 篇 decoding
  • 5 篇 feature extracti...
  • 4 篇 semantic segment...
  • 4 篇 transfer learnin...
  • 4 篇 machine learning
  • 4 篇 text-to-speech s...
  • 4 篇 neural machine t...
  • 3 篇 machine translat...
  • 3 篇 automated progra...
  • 3 篇 lstm

机构

  • 3 篇 google mountain ...
  • 3 篇 google llc mount...
  • 2 篇 google res mount...
  • 2 篇 soongsil univ de...
  • 2 篇 nara inst sci & ...
  • 2 篇 soongsil univ sc...
  • 2 篇 nagoya univ info...
  • 2 篇 natl inst inform...
  • 2 篇 univ trento dept...
  • 2 篇 cent china norma...
  • 2 篇 south china univ...
  • 2 篇 fdn bruno kessle...
  • 1 篇 columbia univers...
  • 1 篇 indian inst trop...
  • 1 篇 fdn bruno kessle...
  • 1 篇 city univ hong k...
  • 1 篇 chung ang univ g...
  • 1 篇 jd intelligent c...
  • 1 篇 shandong enginee...
  • 1 篇 ping an technol ...

作者

  • 4 篇 jia ye
  • 4 篇 weiss ron j.
  • 4 篇 bovolo francesca
  • 4 篇 ghosh raktim
  • 4 篇 biadsy fadi
  • 3 篇 moreno pedro j.
  • 3 篇 wu yonghui
  • 2 篇 yamagishi junich...
  • 2 篇 johnson melvin
  • 2 篇 chen youzheng
  • 2 篇 tan xiaoyu
  • 2 篇 ramabhadran bhuv...
  • 2 篇 nakamura satoshi
  • 2 篇 jiang liyang
  • 2 篇 li min
  • 2 篇 lee soowon
  • 2 篇 okamoto takuma
  • 2 篇 kawahara tatsuya
  • 2 篇 wu chung-hsien
  • 2 篇 doshi rohan

语言

  • 138 篇 英文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Sequence-to-sequence Model"
139 条 记 录,以下是131-140 订阅
排序:
SPEECH EMOTION RECOGNITION USING DEEP NEURAL NETWORK CONSIDERING VERBAL AND NONVERBAL SPEECH SOUNDS
SPEECH EMOTION RECOGNITION USING DEEP NEURAL NETWORK CONSIDE...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Huang, Kun-Yi Wu, Chung-Hsien Hong, Qian-Bei Su, Ming-Hsiang Chen, Yi-Hsuan Natl Cheng Kung Univ Dept Comp Sci & Informat Engn Tainan Taiwan
Speech emotion recognition is becoming increasingly important for many applications. In real-life communication, non-verbal sounds within an utterance also play an important role for people to recognize emotion. In cu... 详细信息
来源: 评论
Sentence Simplification Based on Multi-Stage Encoder model
收藏 引用
IEEE ACCESS 2019年 7卷 174248-174256页
作者: Zhang, Lemin Deng, Huifang South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China
Sentence simplification aims to simplify a complex sentences while retaining its main idea. It is one of the most important tasks in natural language processing. Recent works addressed the task with sequence-to-sequen... 详细信息
来源: 评论
Nonintrusive Load Monitoring Based on Deep Learning  1
收藏 引用
6th ECML PKDD International Workshop on Data Analytics for Renewable Energy Integration (DARE)
作者: Wang, Ke Zhong, Haiwang Yu, Nanpeng Xia, Qing Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China Tsinghua Univ State Key Lab Control & Simulat Power Syst & Gene Beijing 100084 Peoples R China Univ Calif Riverside Riverside CA 92521 USA
This paper presents a novel nonintrusive load monitoring method based on deep learning. Unlike the existing work based on convolutional neural network and recurrent neural network with fully connected layers, this pap... 详细信息
来源: 评论
FORWARD ATTENTION IN sequence-TO-sequence ACOUSTIC modelING FOR SPEECH SYNTHESIS
FORWARD ATTENTION IN SEQUENCE-TO-SEQUENCE ACOUSTIC MODELING ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Jing-Xuan Ling, Zhen-Hua Dai, Li-Rong Univ Sci & Technol China Natl Engn Lab Speech & Language Informat Proc Hefei Anhui Peoples R China
This paper proposes a forward attention method for the sequence-to-sequence acoustic modeling of speech synthesis. This method is motivated by the nature of the monotonic alignment from phone sequences to acoustic seq... 详细信息
来源: 评论
END-TO-END MULTIMODAL SPEECH RECOGNITION
END-TO-END MULTIMODAL SPEECH RECOGNITION
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Palaskar, Shruti Sanabria, Ramon Metze, Florian Carnegie Mellon Univ Pittsburgh PA 15213 USA
Transcription or sub-titling of open-domain videos is still a challenging domain for Automatic Speech Recognition (ASR) due to the data's challenging acoustics, variable signal processing and the essentially unres... 详细信息
来源: 评论
Knowledge-based Questions Generation with Seq2Seq Learning  6
Knowledge-based Questions Generation with Seq2Seq Learning
收藏 引用
IEEE International Conference on Progress in Informatics and Computing (PIC)
作者: Tang, Xiangru Gao, Hanning Gao, Junjie Peking Univ Inst Comp Sci & Technol Beijing Peoples R China Cent China Normal Univ Sch Comp Wuhan Hubei Peoples R China
Building human-computer interaction engines is a fundamental challenge in Artificial Intelligence, with the goal of building a system which can automatically talk to human in natural language. Therefore, the ability t... 详细信息
来源: 评论
Reconstructing Missing Data in Event Logs using Deep Learning Methods
Reconstructing Missing Data in Event Logs using Deep Learnin...
收藏 引用
作者: LINDA HAMP CHALMERS UNIVERSITY OF TECHNOLOGY
学位级别:硕士
Advances in computational power and deep learning methods enable many indus- tries to use their data to gain more meaningful insights than previously possible. The data is commonly found in event logs from software sy... 详细信息
来源: 评论
FORWARD ATTENTION IN sequence-TO-sequence ACOUSTIC modelING FOR SPEECH SYNTHESIS
FORWARD ATTENTION IN SEQUENCE-TO-SEQUENCE ACOUSTIC MODELING ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Jing-Xuan Zhang Zhen-Hua Ling Li-Rong Dai National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China Hefei P.R.China
This paper proposes a forward attention method for the sequence-to-sequence acoustic modeling of speech synthesis. This method is motivated by the nature of the monotonic alignment from phone sequences to acoustic seq... 详细信息
来源: 评论
END-TO-END MULTIMODAL SPEECH RECOGNITION
END-TO-END MULTIMODAL SPEECH RECOGNITION
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Shruti Palaskar Ramon Sanabria Florian Metze Carnegie Mellon University Pittsburgh PA U.S.A.
Transcription or sub-titling of open-domain videos is still a challenging domain for Automatic Speech Recognition (ASR) due to the data's challenging acoustics, variable signal processing and the essentially unres... 详细信息
来源: 评论