咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 7 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 8 篇 sequential data ...
  • 2 篇 hidden markov mo...
  • 2 篇 expectation-maxi...
  • 1 篇 reservoir comput...
  • 1 篇 sequence memoize...
  • 1 篇 collaborative fi...
  • 1 篇 margin maximizat...
  • 1 篇 student's t-dist...
  • 1 篇 shared represent...
  • 1 篇 deep learning
  • 1 篇 lstm
  • 1 篇 heterogeneous da...
  • 1 篇 deep autoencoder
  • 1 篇 multivariate nor...
  • 1 篇 kernel learning
  • 1 篇 prediction
  • 1 篇 data science
  • 1 篇 bayesian inferen...
  • 1 篇 time series
  • 1 篇 copula

机构

  • 1 篇 middle tennessee...
  • 1 篇 truman state uni...
  • 1 篇 univ london impe...
  • 1 篇 minist publ secu...
  • 1 篇 xavier univ loui...
  • 1 篇 florida atlantic...
  • 1 篇 wuhan univ sci &...
  • 1 篇 cyprus univ tech...
  • 1 篇 roger williams u...
  • 1 篇 univ london impe...
  • 1 篇 univ london impe...
  • 1 篇 ncsr demokritos ...
  • 1 篇 hubei key lab in...
  • 1 篇 rakuten inst tec...
  • 1 篇 natl tech univ a...
  • 1 篇 univ miami ctr c...
  • 1 篇 nanyang technol ...

作者

  • 5 篇 chatzis sotirios...
  • 2 篇 demiris yiannis
  • 1 篇 varvarigou theod...
  • 1 篇 xu jiu
  • 1 篇 liu chen
  • 1 篇 bhandari hum nat...
  • 1 篇 rimal binod
  • 1 篇 zhu ziqi
  • 1 篇 deng chunhua
  • 1 篇 kosmopoulos dimi...
  • 1 篇 rimal ramchandra
  • 1 篇 stenger bjorn
  • 1 篇 hirate yu
  • 1 篇 dahal keshab r.
  • 1 篇 li tianyu
  • 1 篇 zou jixin
  • 1 篇 pokhrel nawa raj
  • 1 篇 zhang jiayuan
  • 1 篇 ma yukun

语言

  • 7 篇 英文
  • 1 篇 其他
检索条件"主题词=Sequential Data Modeling"
8 条 记 录,以下是1-10 订阅
排序:
Multi-kernel Gaussian process latent variable regression model for high-dimensional sequential data modeling
收藏 引用
NEUROCOMPUTING 2019年 348卷 3-15页
作者: Zhu, Ziqi Zhang, Jiayuan Zou, Jixin Deng, Chunhua Wuhan Univ Sci & Technol Sch Comp Sci & Technol Wuhan Hubei Peoples R China Hubei Key Lab Intelligent Informat Proc & Real Ti Wuhan Hubei Peoples R China Minist Publ Secur Inst Forens Sci Beijing Peoples R China
modeling sequential data has been a hot research field for decades. One of the most challenge problems in this field is modeling real-world high-dimensional sequential data with limited training samples. This is mainl... 详细信息
来源: 评论
Robust sequential data modeling Using an Outlier Tolerant Hidden Markov Model
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2009年 第9期31卷 1657-1669页
作者: Chatzis, Sotirios P. Kosmopoulos, Dimitrios I. Varvarigou, Theodora A. Univ Miami Ctr Computat Sci Coral Gables FL 33146 USA NCSR Demokritos Athens 15310 Greece Natl Tech Univ Athens Dept Elect & Comp Engn GR-15773 Athens Greece
Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian ... 详细信息
来源: 评论
LSTM-SDM: An integrated framework of LSTM implementation for sequential data modeling
收藏 引用
SOFTWARE IMPACTS 2022年 14卷
作者: Bhandari, Hum Nath Rimal, Binod Pokhrel, Nawa Raj Rimal, Ramchandra Dahal, Keshab R. Roger Williams Univ Dept Math Bristol RI USA Florida Atlantic Univ Dept Math Sci Boca Raton FL 33431 USA Xavier Univ Louisiana Dept Phys & Comp Sci New Orleans LA USA Middle Tennessee State Univ Dept Math Sci Murfreesboro TN USA Truman State Univ Dept Stat Kirksville MO USA
LSTM-SDM is a python-based integrated computational framework built on the top of Tensorflow/Keras and written in the Jupyter notebook. It provides several object-oriented functionalities for implementing single layer... 详细信息
来源: 评论
Margin-maximizing classification of sequential data with infinitely-long temporal dependencies
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2013年 第11期40卷 4519-4527页
作者: Chatzis, Sotirios P. Cyprus Univ Technol Dept Elect Engn Nicosia Cyprus
Generative models for sequential data are usually based on the assumption of temporal dependencies described-by a first-order Markov chain. To ameliorate this shallow modeling assumption, several authors have proposed... 详细信息
来源: 评论
Echo State Gaussian Process
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS 2011年 第9期22卷 1435-1445页
作者: Chatzis, Sotirios P. Demiris, Yiannis Univ London Imperial Coll Sci Technol & Med Dept Elect & Elect Engn London SW7 2BT England
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple computationally ... 详细信息
来源: 评论
The copula echo state network
收藏 引用
PATTERN RECOGNITION 2012年 第1期45卷 570-577页
作者: Chatzis, Sotirios P. Demiris, Yiannis Univ London Imperial Coll Sci Technol & Med Dept Elect & Elect Engn London SW7 2AZ England
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple, computationally... 详细信息
来源: 评论
Deep Heterogeneous Autoencoders for Collaborative Filtering  18
Deep Heterogeneous Autoencoders for Collaborative Filtering
收藏 引用
18th IEEE International Conference on data Mining Workshops (ICDMW)
作者: Li, Tianyu Ma, Yukun Xu, Jiu Stenger, Bjorn Liu, Chen Hirate, Yu Rakuten Inst Technol Tokyo Japan Nanyang Technol Univ Singapore Singapore
This paper leverages heterogeneous auxiliary information to address the data sparsity problem of recommender systems. We propose a model that learns a shared feature space from heterogeneous data, such as item descrip... 详细信息
来源: 评论
Hidden Markov Models with Nonelliptically Contoured State Densities
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2010年 第12期32卷 2297-2304页
作者: Chatzis, Sotirios P. Univ London Imperial Coll Sci Technol & Med Dept Elect & Elect Engn Intelligent Syst & Networks Grp London SW7 2BT England
Hidden Markov models (HMMs) are a popular approach for modeling sequential data comprising continuous attributes. In such applications, the observation emission densities of the HMM hidden states are typically modeled... 详细信息
来源: 评论