modelingsequentialdata has been a hot research field for decades. One of the most challenge problems in this field is modeling real-world high-dimensional sequentialdata with limited training samples. This is mainl...
详细信息
modelingsequentialdata has been a hot research field for decades. One of the most challenge problems in this field is modeling real-world high-dimensional sequentialdata with limited training samples. This is mainly due to the following two reasons. First, if the dimension of the data is significantly greater then the number of the data, it may result in the over-fitting problem. Second, the dynamic behavior of the real-world data is very complex and difficult to approximate. To overcome these two problems, we propose a multi-kernel Gaussian process latent variable regression model for high-dimensional sequential data modeling and prediction. In our model, we design a regression model based on the Gaussian process latent variable model. Furthermore, a multi-kernel learning model is designed to automatically construct suitable nonlinear kernel for various types of sequentialdata. We evaluate the effectiveness of our method using two types of real-world high-dimensional sequentialdata, including the human motion data and the motion texture video data. In addition, our method is compared with several representative sequential data modeling methods. Experimental results show that our method achieves promising modeling capability and is capable of predict human motion and texture video with higher quality. (C) 2018 Elsevier B.V. All rights reserved.
Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian ...
详细信息
Hidden Markov (chain) models using finite Gaussian mixture models as their hidden state distributions have been successfully applied in sequential data modeling and classification applications. Nevertheless, Gaussian mixture models are well known to be highly intolerant to the presence of untypical data within the fitting data sets used for their estimation. Finite Student's t-mixture models have recently emerged as a heavier-tailed, robust alternative to Gaussian mixture models, overcoming these hurdles. To exploit these merits of Student's t-mixture models in the context of a sequential data modeling setting, we introduce, in this paper, a novel hidden Markov model where the hidden state distributions are considered to be finite mixtures of multivariate Student's t-densities. We derive an algorithm for the model parameters estimation under a maximum likelihood framework, assuming full, diagonal, and factor-analyzed covariance matrices. The advantages of the proposed model over conventional approaches are experimentally demonstrated through a series of sequential data modeling applications.
LSTM-SDM is a python-based integrated computational framework built on the top of Tensorflow/Keras and written in the Jupyter notebook. It provides several object-oriented functionalities for implementing single layer...
详细信息
LSTM-SDM is a python-based integrated computational framework built on the top of Tensorflow/Keras and written in the Jupyter notebook. It provides several object-oriented functionalities for implementing single layer and multilayer LSTM models for sequential data modeling and time series forecasting. Multiple subroutines are blended to create a conducive user-friendly environment that facilitates data exploration and visualization, normalization and input preparation, hyperparameter tuning, performance evaluations, visualization of results, and statistical analysis. We utilized the LSTM-SDM framework in predicting the stock market index and observed impressive results. The framework can be generalized to solve several other real-world time series problems.
Generative models for sequentialdata are usually based on the assumption of temporal dependencies described-by a first-order Markov chain. To ameliorate this shallow modeling assumption, several authors have proposed...
详细信息
Generative models for sequentialdata are usually based on the assumption of temporal dependencies described-by a first-order Markov chain. To ameliorate this shallow modeling assumption, several authors have proposed models with higher-order dependencies. However, the practical applicability of these approaches is hindered by their prohibitive computational costs in most cases. In addition, most existing approaches give rise to model training algorithms with objective functions that entail multiple spurious local optima, thus requiring application of tedious countermeasures to avoid getting trapped to bad model estimates. In this paper, we devise a novel margin-maximizing model with convex objective function that allows for capturing infinitely-long temporal dependencies in sequentialdatasets. This is effected by utilizing a recently proposed nonparametric Bayesian model of label sequences with infinitely-long temporal dependencies, namely the sequence memoizer, and training our model using margin maximization and a versatile mean-field-like approximation to allow for increased computational efficiency. As we experimentally demonstrate, the devised margin-maximizing construction of our model, which leads to a convex optimization scheme, without any spurious local optima, combined with the capacity of our model to capture long and complex temporal dependencies, allow for obtaining exceptional pattern recognition performance in several applications. (C) 2013 Elsevier Ltd. All rights reserved.
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple computationally ...
详细信息
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs, outperforming classical approaches on a number of benchmark tasks. In this paper, we introduce a novel Bayesian approach toward ESNs, the echo state Gaussian process (ESGP). The ESGP combines the merits of ESNs and Gaussian processes to provide a more robust alternative to conventional reservoir computing networks while also offering a measure of confidence on the generated predictions (in the form of a predictive distribution). We exhibit the merits of our approach in a number of applications, considering both benchmark datasets and real-world applications, where we show that our method offers a significant enhancement in the dynamical datamodeling capabilities of ESNs. Additionally, we also show that our method is orders of magnitude more computationally efficient compared to existing Gaussian process-based methods for dynamical datamodeling, without compromises in the obtained predictive performance.
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple, computationally...
详细信息
Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple, computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs, outperforming classical approaches on a number of benchmark tasks. This paper studies the formulation of a class of copula-based semiparametric models for sequential data modeling, characterized by nonparametric marginal distributions modeled by postulating suitable echo state networks, and parametric copula functions that help capture all the scale-free temporal dependence of the modeled processes. We provide a simple algorithm for the data-driven estimation of the marginal distribution and the copula parameters of our model under the maximum-likelihood framework. We exhibit the merits of our approach by considering a number of applications;as we show, our method offers a significant enhancement in the dynamical datamodeling capabilities of ESNs, without significant compromises in the algorithm's computational efficiency. (C) 2011 Elsevier Ltd. All rights reserved.
This paper leverages heterogeneous auxiliary information to address the data sparsity problem of recommender systems. We propose a model that learns a shared feature space from heterogeneous data, such as item descrip...
详细信息
ISBN:
(纸本)9781538691595
This paper leverages heterogeneous auxiliary information to address the data sparsity problem of recommender systems. We propose a model that learns a shared feature space from heterogeneous data, such as item descriptions, product tags and online purchase history, to obtain better predictions. Our model consists of autoencoders, not only for numerical and categorical data, but also for sequentialdata, which enables capturing user tastes, item characteristics and the recent dynamics of user preference. We learn the autoencoder architecture for each data source independently in order to better model their statistical properties. Our evaluation on two MovieLens datasets and an e-commerce dataset shows that mean average precision and recall improve over state-of-the-art methods.
Hidden Markov models (HMMs) are a popular approach for modelingsequentialdata comprising continuous attributes. In such applications, the observation emission densities of the HMM hidden states are typically modeled...
详细信息
Hidden Markov models (HMMs) are a popular approach for modelingsequentialdata comprising continuous attributes. In such applications, the observation emission densities of the HMM hidden states are typically modeled by means of elliptically contoured distributions, usually multivariate Gaussian or Student's-t densities. However, elliptically contoured distributions cannot sufficiently model heavy-tailed or skewed populations which are typical in many fields, such as the financial and the communication signal processing domain. Employing finite mixtures of such elliptically contoured distributions to model the HMM state densities is a common approach for the amelioration of these issues. Nevertheless, the nature of the modeled data often requires postulation of a large number of mixture components for each HMM state, which might have a negative effect on both model efficiency and the training data set's size required to avoid overfitting. To resolve these issues, in this paper, we advocate for the utilization of a nonelliptically contoured distribution, the multivariate normal inverse Gaussian (MNIG) distribution, for modeling the observation densities of HMMs. As we experimentally demonstrate, our selection allows for more effective modeling of skewed and heavy-tailed populations in a simple and computationally efficient manner.
暂无评论