咨询与建议

限定检索结果

文献类型

  • 15 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 14 篇 计算机科学与技术...
    • 4 篇 控制科学与工程
    • 3 篇 电气工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 软件工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 1 篇 经济学
    • 1 篇 理论经济学

主题

  • 21 篇 sequential model...
  • 5 篇 hyperparameter o...
  • 4 篇 gaussian process...
  • 3 篇 catboost
  • 2 篇 efficient global...
  • 2 篇 bayesian optimiz...
  • 2 篇 model choice
  • 2 篇 sequential exper...
  • 1 篇 tools
  • 1 篇 continuous black...
  • 1 篇 rock mass boreab...
  • 1 篇 data-driven ener...
  • 1 篇 virtual metrolog...
  • 1 篇 tbm
  • 1 篇 initial design
  • 1 篇 algorithm config...
  • 1 篇 reinforcement le...
  • 1 篇 ensemble learnin...
  • 1 篇 tree of parzen e...
  • 1 篇 deep learning

机构

  • 2 篇 univ hildesheim ...
  • 1 篇 ctr univ defensa...
  • 1 篇 informat syst & ...
  • 1 篇 katholieke univ ...
  • 1 篇 vtt tech res ctr...
  • 1 篇 la trobe univ sc...
  • 1 篇 centro universit...
  • 1 篇 google mountain ...
  • 1 篇 zhengzhou univ s...
  • 1 篇 zhejiang univ co...
  • 1 篇 sejong univ deep...
  • 1 篇 ha noi univ civi...
  • 1 篇 natl inst dev ad...
  • 1 篇 cadence design s...
  • 1 篇 univ leeds sch c...
  • 1 篇 wuhan univ state...
  • 1 篇 univ technol syd...
  • 1 篇 chinese acad sci...
  • 1 篇 world univ bangl...
  • 1 篇 kings coll londo...

作者

  • 3 篇 wistuba martin
  • 3 篇 schilling nicola...
  • 3 篇 schmidt-thieme l...
  • 2 篇 drumond lucas
  • 1 篇 chen ching-hsien
  • 1 篇 lee seunghye
  • 1 篇 sagratella simon...
  • 1 篇 boulesteix anne-...
  • 1 篇 bo yin
  • 1 篇 bleukx ignace
  • 1 篇 hossain m. j.
  • 1 篇 huang xing
  • 1 篇 probst philipp
  • 1 篇 bernhard schölko...
  • 1 篇 leonetti matteo
  • 1 篇 aboussalah amine...
  • 1 篇 song hongqing
  • 1 篇 pan yucong
  • 1 篇 zheng pengfei
  • 1 篇 lars schmidt-thi...

语言

  • 20 篇 英文
  • 1 篇 中文
检索条件"主题词=Sequential Model-Based Optimization"
21 条 记 录,以下是11-20 订阅
排序:
Virtual metrology of semiconductor PVD process based on combination of tree-based ensemble model
收藏 引用
ISA TRANSACTIONS 2020年 103卷 192-202页
作者: Chen, Ching-Hsien Zhao, Wei-Dong Pang, Timothy Lin, Yi-Zheng Tongji Univ Elect & Informat Engn Shanghai 201804 Peoples R China Semicond Mfg Int Corp It Dept Shanghai 201203 Peoples R China
In order to improve the accuracy of semiconductor wafer virtual metrology, and overcome the physical metrology delay of wafer acceptance test, a virtual physical vapor deposition metrology method based on combination ... 详细信息
来源: 评论
A novel optimization perspective to the problem of designing sequences of tasks in a reinforcement learning framework
收藏 引用
optimization AND ENGINEERING 2023年 第2期24卷 831-846页
作者: Seccia, Ruggiero Foglino, Francesco Leonetti, Matteo Sagratella, Simone Sapienza Univ Rome Dept Comp Control & Management Engn Antonio Ruber Rome Italy Kings Coll London Dept Informat London England Univ Leeds Sch Comp Leeds W Yorkshire England
Training agents over sequences of tasks is often employed in deep reinforcement learning to let the agents progress more quickly towards better behaviours. This problem, known as curriculum learning, has been mainly t... 详细信息
来源: 评论
BayesOpt: A Bayesian optimization Library for Nonlinear optimization, Experimental Design and Bandits
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2014年 15卷 3735-3739页
作者: Martinez-Cantin, Ruben Ctr Univ Defensa Zaragoza 50090 Spain
BayesOpt is a library with state-of-the-art Bayesian optimization methods to solve nonlinear optimization, stochastic bandits or sequential experimental design problems. Bayesian optimization characterized for being s... 详细信息
来源: 评论
Hyperparameter optimization with Factorized Multilayer Perceptrons
Hyperparameter Optimization with Factorized Multilayer Perce...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD)
作者: Schilling, Nicolas Wistuba, Martin Drumond, Lucas Schmidt-Thieme, Lars Univ Hildesheim Informat Syst & Machine Learning Lab D-31141 Hildesheim Germany
In machine learning, hyperparameter optimization is a challenging task that is usually approached by experienced practitioners or in a computationally expensive brute-force manner such as grid-search. Therefore, recen... 详细信息
来源: 评论
model-based Algorithm Configuration with Adaptive Capping and Prior Distributions  1
收藏 引用
19th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR)
作者: Bleukx, Ignace Berden, Senne Coenen, Lize Decleyre, Nicholas Guns, Tias Katholieke Univ Leuven Leuven Belgium
Many advanced solving algorithms for constraint programming problems are highly configurable. The research area of algorithm configuration investigates ways of automatically configuring these solvers in the best manne... 详细信息
来源: 评论
Joint model Choice and Hyperparameter optimization with Factorized Multilayer Perceptrons  27
Joint Model Choice and Hyperparameter Optimization with Fact...
收藏 引用
27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Schilling, Nicolas Wistuba, Martin Drumond, Lucas Schmidt-Thieme, Lars Univ Hildesheim Informat Syst & Machine Learning Lab D-31141 Hildesheim Germany
Recent work has demonstrated that hyperparameter optimization within the sequential model-based optimization (SMBO) framework is generally possible. This approach replaces the expensive-to-evaluate function that maps ... 详细信息
来源: 评论
Hyperparameters and tuning strategies for random forest
收藏 引用
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY 2019年 第3期9卷 e1301-e1301页
作者: Probst, Philipp Wright, Marvin N. Boulesteix, Anne-Laure Ludwig Maximilians Univ Munchen Inst Med Informat Proc Biometry & Epidemiol Marchioninistr 15 D-81377 Munich Germany Leibniz Inst Prevent Res & Epidemiol BIPS Bremen Germany
The random forest (RF) algorithm has several hyperparameters that have to be set by the user, for example, the number of observations drawn randomly for each tree and whether they are drawn with or without replacement... 详细信息
来源: 评论
Prediction compressive strength of cement-based mortar containing metakaolin using explainable Categorical Gradient Boosting model
收藏 引用
ENGINEERING STRUCTURES 2022年 269卷
作者: Nguyen, Ngoc-Hien Tong, Kien T. Lee, Seunghye Karamanli, Armagan Vo, Thuc P. HUTECH Univ CIRTech Inst Ho Chi Minh City Vietnam Ha Noi Univ Civil Engn Fac Bldg Mat 55 Giai Phong Hanoi Vietnam Sejong Univ Deep Learning Architecture Res Ctr Dept Architectural Engn 209 Neungdong Ro Seoul 05006 South Korea Istinye Univ Fac Engn & Nat Sci Mech Engn Istanbul Turkey La Trobe Univ Sch Comp Engn & Math Sci Bundoora Vic 3086 Australia
Although machine learning models have been employed for the compressive strength (CS) of cement-based mortar containing metakaolin, it is difficult to understand how they work due to "black-box "nature. In o... 详细信息
来源: 评论
Continuous control with Stacked Deep Dynamic Recurrent Reinforcement Learning for portfolio optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2020年 140卷 112891-112891页
作者: Aboussalah, Amine Mohamed Lee, Chi-Guhn Univ Toronto Dept Mech & Ind Engn Toronto ON M5S 3G8 Canada
Recurrent reinforcement learning (RRL) techniques have been used to optimize asset trading systems and have achieved outstanding results. However, the majority of the previous work has been dedicated to systems with d... 详细信息
来源: 评论
Joint model Choice and Hyperparameter optimization with Factorized Multilayer Perceptrons
Joint Model Choice and Hyperparameter Optimization with Fact...
收藏 引用
International Conference on Tools with Artificial Intelligence
作者: Nicolas Schilling Martin Wistuba Lucas Drumond Lars Schmidt-Thieme University of Hildesheim Information Systems and Machine Learning Lab Hildesheim Germany
Recent work has demonstrated that hyperparameter optimization within the sequential model-based optimization (SMBO) framework is generally possible. This approach replaces the expensive-to-evaluate function that maps ... 详细信息
来源: 评论