To move the world toward a more sustainable energy future, it is crucial to use the limited hydrocarbon geological resources efficiently and to develop technologies that facilitate this. More rational management of pe...
详细信息
To move the world toward a more sustainable energy future, it is crucial to use the limited hydrocarbon geological resources efficiently and to develop technologies that facilitate this. More rational management of petroleum reservoirs and underground gas storage can be obtained by optimizing well control. This paper presents a novel approach to optimal well control based on the combination of optimal control theory, innovative artificial intelligence methods, and numerical reservoir simulations. In the developed algorithm, well control is based on an auto-adaptive parameterized decision tree. Its parameters are optimized by state-of-the-art machine learning, which uses previous results to determine favorable parameters. During optimization, a numerical reservoir simulator is applied to compute the objective function. The developed solution enables full automation of the wells for optimal control. An exemplary application of the developed solution to optimize underground storage of gas with high nitrogen content confirmed its effectiveness. The total nitrogen content in the gas decreased by 2.4%, increasing energy efficiency without increasing expense, as only well control was modified.
The global increase in energy demand and the decreasing number of newly discovered hydrocarbon reservoirs caused by the relatively low oil price means that it is crucial to exploit existing reservoirs as efficiently a...
详细信息
The global increase in energy demand and the decreasing number of newly discovered hydrocarbon reservoirs caused by the relatively low oil price means that it is crucial to exploit existing reservoirs as efficiently as possible. Optimization of the reservoir control may increase the technical and economic efficiency of the production. In this paper, a novel algorithm that automatically determines the intelligent control maximizing the NPV of a given production process was developed. The idea is to build an auto-adaptive parameterized decision tree that replaces the arbitrarily selected limit values for the selected attributes of the decision tree with parameters. To select the optimal values of the decision tree parameters, an AI-based optimization tool called SMAC (sequential model-based algorithm configuration) was used. In each iteration, the generated control sequence is introduced into the reservoir simulator to compute the NVP, which is then utilized by the SMAC tool to vary the limit values to generate a better control sequence, which leads to an improved NPV. A new tool connecting the parameterized decision tree with the reservoir simulator and the optimization tool was developed. Its application on a simulation model of a real reservoir for which the CCS-EOR process was considered allowed oil production to be increased by 3.5% during the CO2-EOR phase, reducing the amount of carbon dioxide injected at that time by 16%. Hence, the created tool allowed revenue to be increased by 49%.
The optimization of decentralized energy systems is an important practical problem that can be modeled using stochastic programs and solved via their large-scale, deterministic-equivalent formulations. Unfortunately, ...
详细信息
暂无评论