咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 1 篇 object detection
  • 1 篇 shanghaitech par...
  • 1 篇 two-branch cnn
  • 1 篇 density map
  • 1 篇 stacked pooling
  • 1 篇 shanghaitech par...
  • 1 篇 feature extracti...
  • 1 篇 cp-cnn
  • 1 篇 mcnn
  • 1 篇 convolutional ne...
  • 1 篇 learning (artifi...
  • 1 篇 dense crowd coun...
  • 1 篇 high-quality den...
  • 1 篇 transposed convo...
  • 1 篇 convolutional ne...
  • 1 篇 deep convolution...
  • 1 篇 deep learning fr...

机构

  • 1 篇 china elect tech...
  • 1 篇 nankai univ key ...
  • 1 篇 tianjin univ sch...

作者

  • 1 篇 zhu jianghua
  • 1 篇 wang yongjie
  • 1 篇 liu yanyan
  • 1 篇 zhang wei

语言

  • 1 篇 英文
检索条件"主题词=ShanghaiTech PartB dataset"
1 条 记 录,以下是1-10 订阅
排序:
Deep convolution network for dense crowd counting
收藏 引用
IET IMAGE PROCESSING 2020年 第4期14卷 621-627页
作者: Zhang, Wei Wang, Yongjie Liu, Yanyan Zhu, Jianghua Tianjin Univ Sch Microelect Tianjin 300072 Peoples R China China Elect Technol Grp Corp Res Inst 54 Dept Intelligence Shijiazhuang 050081 Hebei Peoples R China Nankai Univ Key Lab Photoelect Thin Film Devices & Technol Ti Tianjin 300071 Peoples R China
Estimating the total number of people in a crowded situation is a challenging task due to numerous occlusions and perspective changes existing in crowd images. To address this issue, the authors have proposed a new de... 详细信息
来源: 评论