咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 26 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 79 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 76 篇 工学
    • 42 篇 电气工程
    • 21 篇 计算机科学与技术...
    • 14 篇 信息与通信工程
    • 14 篇 控制科学与工程
    • 9 篇 机械工程
    • 9 篇 交通运输工程
    • 7 篇 仪器科学与技术
    • 7 篇 动力工程及工程热...
    • 7 篇 石油与天然气工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 环境科学与工程(可...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 软件工程
    • 1 篇 公安技术
  • 15 篇 理学
    • 9 篇 物理学
    • 3 篇 化学
    • 1 篇 数学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
    • 1 篇 生物学
    • 1 篇 系统科学
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 4 篇 医学
    • 4 篇 临床医学

主题

  • 79 篇 smooth variable ...
  • 25 篇 kalman filter
  • 14 篇 target tracking
  • 11 篇 state estimation
  • 7 篇 robust estimatio...
  • 6 篇 estimation
  • 5 篇 lithium-ion batt...
  • 5 篇 state of charge
  • 5 篇 extended kalman ...
  • 5 篇 nonlinear estima...
  • 4 篇 neural networks
  • 4 篇 estimation theor...
  • 4 篇 interacting mult...
  • 4 篇 fault detection
  • 3 篇 state and parame...
  • 3 篇 noise measuremen...
  • 3 篇 model uncertaint...
  • 3 篇 sliding mode est...
  • 3 篇 lithium-ion batt...
  • 3 篇 modeling uncerta...

机构

  • 7 篇 mcmaster univ de...
  • 6 篇 mcmaster univ de...
  • 5 篇 mcmaster univ de...
  • 4 篇 naval aviat univ...
  • 4 篇 tsinghua univ de...
  • 3 篇 xidian univ sch ...
  • 3 篇 univ bologna dep...
  • 3 篇 philadelphia uni...
  • 2 篇 mcmaster univ ct...
  • 2 篇 mcmaster univ ha...
  • 2 篇 zhengzhou univ l...
  • 2 篇 univ maryland ba...
  • 2 篇 univ maryland ba...
  • 2 篇 ryerson univ dep...
  • 2 篇 univ sharjah sha...
  • 2 篇 mcmaster univ ha...
  • 1 篇 univ guelph coll...
  • 1 篇 york coll penn y...
  • 1 篇 beijing inst tec...
  • 1 篇 us army res lab ...

作者

  • 15 篇 habibi saeid
  • 11 篇 gadsden s. a.
  • 10 篇 gadsden s. andre...
  • 8 篇 ahmed ryan
  • 7 篇 al-shabi m.
  • 5 篇 he you
  • 5 篇 li yaowen
  • 5 篇 li gang
  • 5 篇 habibi s. r.
  • 5 篇 liu yu
  • 4 篇 setoodeh peyman
  • 4 篇 kirubarajan t.
  • 4 篇 zhang xiao-ping
  • 4 篇 rahimifard sara
  • 3 篇 jiao yuzhao
  • 3 篇 wilkerson stephe...
  • 3 篇 chen yu
  • 3 篇 lou taishan
  • 3 篇 hilal waleed
  • 3 篇 demim fethi

语言

  • 75 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=Smooth variable structure filter"
79 条 记 录,以下是11-20 订阅
排序:
Information Extraction Using Spectral Analysis of the Chattering of the smooth variable structure filter
收藏 引用
IEEE ACCESS 2023年 11卷 104992-105008页
作者: Saeedzadeh, Ahsan Setoodeh, Peyman Alavi, Marjan Habibi, Saeid McMaster Univ Dept Mech Engn Hamilton ON L8S 4L8 Canada W Booth Sch Engn Practice & Technol Hamilton ON L8S 4L8 Canada
smooth variable structure filter (SVSF) is a model-based robust nonlinear filtering technique, based on the variable structure concept formulated in a predictor-corrector form. It is used for estimating the states of ... 详细信息
来源: 评论
Reliable state of charge and state of health estimation using the smooth variable structure filter
收藏 引用
CONTROL ENGINEERING PRACTICE 2018年 77卷 1-14页
作者: Afshari, Hamed Hossein Attari, Mina Ahmed, Ryan Delbari, Ali Habibi, Saeid Shoa, Tina McMaster Univ Ctr Mechatron & Hybrid Technol Hamilton ON Canada Cadex Elect Inc Vancouver BC Canada
This paper introduces a reliable strategy for the state of charge (SOC) and the state of health (SOH) estimation of healthy and aged Lithium polymer cells. Dynamics of the cell are modeled using some equivalent circui... 详细信息
来源: 评论
State of Temperature Estimation of Li-Ion Batteries Using 3rd Order smooth variable structure filter
收藏 引用
IEEE ACCESS 2023年 11卷 119078-119089页
作者: Ebrahimi, Farzaneh Ahmed, Ryan Habibi, Saeid McMaster Univ Ctr Mechatron & Hybrid Technol CMHT Dept Mech Engn Hamilton ON L8S 4L8 Canada
The Battery Management System plays a critical role in ensuring the longevity, safety, and optimal performance of batteries by performing state of charge and health estimation, thermal management, cell balancing, and ... 详细信息
来源: 评论
Lattice smooth variable structure filter for Maneuvering Target Tracking with Model Uncertainty
收藏 引用
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING 2023年 第4期47卷 1689-1701页
作者: Jiao, Yuzhao Lou, Taishan Zhao, Liangyu Zhao, Hongmei Lu, Yingbo Zhengzhou Univ Light Ind Sch Elect & Informat Engn Zhengzhou 450001 Peoples R China Beijing Inst Technol Sch Aerosp Engn Beijing 100081 Peoples R China
This paper proposes a new lattice smooth variable structure filter (LSVSF) for maneuvering target tracking with model uncertainty. Under the assumption that the probability density function (PDF) is Gaussian-distribut... 详细信息
来源: 评论
An Improved smooth variable structure filter and Its Application in Ship Wave filtering
收藏 引用
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING 2021年 第3期45卷 711-719页
作者: Jiao, Yuzhao Zhao, Hongmei Wang, Xiaolei Lou, Taishan Zhengzhou Univ Light Ind Sch Elect & Informat Engn Zhengzhou Peoples R China
During the movement of the ship, due to the influence of wind, waves, currents, uncertain model parameters and related noise, there is a certain deviation between actual model and the theoretically model, and the syst... 详细信息
来源: 评论
A smooth variable structure filter FOR STATE ESTIMATION
收藏 引用
CONTROL AND INTELLIGENT SYSTEMS 2007年 第4期35卷 386-394页
作者: Wang, S. Habibi, S. Burton, R. College of Engineering University of Saskatchewan Saskatoon SK S7N 5A9 57 Campus Drive Canada Department of Mechanical Engineering McMaster University Hamilton ON L8S 4L7 1280 Main Street West Canada
A new method of filtering strategy, referred to as the smooth variable structure filter (SVSF) is reviewed and applied to the problem of state estimation. The reaching stability of the SVSF (closely related to that of... 详细信息
来源: 评论
Convergence Analysis of smooth variable structure filter for River Flow and Stage Estimation using Lagrangian Sensors
Convergence Analysis of Smooth Variable Structure Filter for...
收藏 引用
Global OCEANS Singapore - U.S. Gulf Coast Conference
作者: Ismail, Z. H. Jalaludin, N. A. Univ Teknol Malaysia UTM Malaysia Japan Int Inst Technol MJIIT Kuala Lumpur Malaysia Univ Teknol Malaysia UTM Ctr Artificial Intelligence & Robot CAIRO Kuala Lumpur Malaysia Univ Tun Hussein Onn Malaysia UTHM Fac Elect & Elect Engn FKEE Johor Baharu Malaysia
State estimation of river system includes the flow and stage estimation and used in the estimation of the final sensor's velocity which is proportional to the river velocity. The estimation process includes the sy... 详细信息
来源: 评论
STATE ESTIMATION OF A FAULTY ACTUATOR USING THE SECOND-ORDER smooth variable structure filter (THE 2ND-ORDER SVSF)  28
STATE ESTIMATION OF A FAULTY ACTUATOR USING THE SECOND-ORDER...
收藏 引用
IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE)
作者: Afshari, Hamed Al-Ani, Dhafar Habibi, Saeid McMaster Univ Dept Mech Engn Hamilton ON L8S 4L8 Canada
This paper presents the application of the new developed second-order smooth variable structure filter, 2nd-order SVSF, for fault detection under uncertain conditions. The 2nd-order SVSF is a novel model-based state e... 详细信息
来源: 评论
An Adaptive smooth variable structure filter based on the Static Multiple Model Strategy  28
An Adaptive Smooth Variable Structure Filter based on the St...
收藏 引用
Conference on Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII
作者: Lee, Andrew Gadsden, S. Andrew Wilkerson, Stephen A. Univ Guelph 50 Stone Rd E Guelph ON N1G 2W1 Canada York Coll Penn York PA 17403 USA
Estimation theory is an important field in mechanical and electrical engineering, and is comprised of strategies that are used to predict, estimate, or smooth out important system state and parameters. The most popula... 详细信息
来源: 评论
Application of the smooth variable structure filter to a Multi-Target Tracking Problem
Application of the Smooth Variable Structure Filter to a Mul...
收藏 引用
Conference on Signal Processing, Sensor Fusion, and Target Recognition XX
作者: Gadsden, S. A. Dunne, D. Tharmarasa, R. Habibi, S. R. Kirubarajan, T. McMaster Univ Dept Mech Eng 1280 Main St W Hamilton ON L8S 4L7 Canada McMaster Univ Hamilton ON L8S 4L8 Canada
The most popular and well-studied estimation method is the Kalman filter (KF), which was introduced in the 1960s. It yields a statistically optimal solution for linear estimation problems. The smooth variable structur... 详细信息
来源: 评论