咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 软件工程

主题

  • 2 篇 social network
  • 2 篇 social recommend...
  • 1 篇 influence diffus...
  • 1 篇 probability matr...
  • 1 篇 recommender syst...
  • 1 篇 social influence
  • 1 篇 graph neural net...
  • 1 篇 trust relationsh...

机构

  • 1 篇 jiangsu univ tec...
  • 1 篇 peoples bank chi...
  • 1 篇 san jose state u...
  • 1 篇 san jose state u...

作者

  • 1 篇 eirinaki magdali...
  • 1 篇 wang john
  • 1 篇 chen xiaobo
  • 1 篇 potika katerina
  • 1 篇 zhang li
  • 1 篇 tallapally dhara...

语言

  • 2 篇 英文
检索条件"主题词=Social recommendation algorithm"
2 条 记 录,以下是1-10 订阅
排序:
recommendation algorithm of influence and trust relationship
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第11期81卷 15635-15652页
作者: Zhang Li Chen XiaoBo Jiangsu Univ Technol Sch Comp Engn Changzhou 213001 Jiangsu Peoples R China Peoples Bank China Changzhou City Ctr Branch Changzhou 213001 Jiangsu Peoples R China
The recommendation system recommends information and services to users by collecting and analyzing user behaviors. Many current studies have shown that recommendation algorithms that integrate social network informati... 详细信息
来源: 评论
Using Graph Neural Networks for social recommendations
收藏 引用
algorithmS 2023年 第11期16卷
作者: Tallapally, Dharahas Wang, John Potika, Katerina Eirinaki, Magdalini San Jose State Univ Dept Comp Sci San Jose CA 95192 USA San Jose State Univ Dept Comp Engn San Jose CA 95192 USA
Recommender systems have revolutionized the way users discover and engage with content. Moving beyond the collaborative filtering approach, most modern recommender systems leverage additional sources of information, s... 详细信息
来源: 评论