咨询与建议

限定检索结果

文献类型

  • 22 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 31 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 工学
    • 18 篇 电气工程
    • 11 篇 计算机科学与技术...
    • 5 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 4 篇 石油与天然气工程
    • 2 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 软件工程
    • 1 篇 安全科学与工程
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 4 篇 理学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 地球物理学

主题

  • 31 篇 soft actor-criti...
  • 11 篇 deep reinforceme...
  • 9 篇 reinforcement le...
  • 5 篇 optimization
  • 2 篇 controlled sensi...
  • 2 篇 anomaly detectio...
  • 2 篇 path planning
  • 2 篇 bidding strategy
  • 2 篇 demand response
  • 2 篇 continuous rewar...
  • 2 篇 mobile robots
  • 2 篇 power market
  • 2 篇 microgrid
  • 2 篇 obstacle avoidan...
  • 1 篇 cache partitioni...
  • 1 篇 internet of thin...
  • 1 篇 load aggregators
  • 1 篇 user clustering
  • 1 篇 rotary inverted ...
  • 1 篇 reward mechanism

机构

  • 3 篇 north china elec...
  • 2 篇 univ texas arlin...
  • 2 篇 syracuse univ de...
  • 2 篇 univ elect sci &...
  • 1 篇 king saud univ c...
  • 1 篇 college of compu...
  • 1 篇 school of automa...
  • 1 篇 zhongtong bus ho...
  • 1 篇 state grid corp ...
  • 1 篇 yuxi normal univ...
  • 1 篇 southeast univ s...
  • 1 篇 school of softwa...
  • 1 篇 duy tan univ sch...
  • 1 篇 south china univ...
  • 1 篇 guangdong univ f...
  • 1 篇 guangdong power ...
  • 1 篇 hong kong polyte...
  • 1 篇 natl chung cheng...
  • 1 篇 suzhou institute...
  • 1 篇 henan inst sci &...

作者

  • 2 篇 wang cheng
  • 2 篇 chen zihan
  • 2 篇 velipasalar sene...
  • 2 篇 lee wei-jen
  • 2 篇 gursoy m. cenk
  • 2 篇 sayed ahmed rabe...
  • 2 篇 zhong chen
  • 2 篇 zhang zhenyuan
  • 1 篇 xuhui wang
  • 1 篇 zaidi syed muham...
  • 1 篇 chang kun
  • 1 篇 yuan wei
  • 1 篇 meng lingyi
  • 1 篇 wang xinzui
  • 1 篇 liu zhe
  • 1 篇 li guangdi
  • 1 篇 zheng jiehui
  • 1 篇 wang xinkai
  • 1 篇 xiao jian
  • 1 篇 zou yuanjiang

语言

  • 29 篇 英文
检索条件"主题词=Soft Actor-Critic Algorithm"
31 条 记 录,以下是11-20 订阅
排序:
Advancements in UAV Path Planning: A Deep Reinforcement Learning Approach with soft actor-critic for Enhanced Navigation
收藏 引用
UNMANNED SYSTEMS 2025年 第4期13卷 1065-1084页
作者: Guo, Jingrui Zhou, Guanzhong Huang, Hailong Huang, Chao Hong Kong Polytech Univ Dept Ind & Syst Engn Hung Hom Hong Kong 999077 Peoples R China Hong Kong Polytech Univ Dept Aeronaut & Aviat Engn Hung Hom Hong Kong 999077 Peoples R China
This paper tackles the intricate challenge of autonomous navigation for Unmanned Aerial Vehicles (UAVs) through dynamically changing environments. We focus on a sophisticated Deep Reinforcement Learning (DRL) approach... 详细信息
来源: 评论
Intelligent vehicle driving decision-making model based on variational AutoEncoder network and deep reinforcement learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Wang, Shufeng Wang, Zhengli Wang, Xinkai Liang, Qingwei Meng, Lingyi Shandong Univ Sci & Technol 579 Qianwangang Rd Qingdao 266590 Shandong Peoples R China Zhongtong Bus Holding Co Ltd 261 Huanghe RdEcon Dev Zone Liaocheng 252000 Shandong Peoples R China
In this paper, an end-to-end driving decision-making model is proposed for intelligent vehicle, utilizing a Variational AutoEncoder (VAE) network and Deep Reinforcement Learning to address the challenges in complex an... 详细信息
来源: 评论
An optimal dispatch strategy for 5G base stations equipped with battery swapping cabinets
收藏 引用
APPLIED ENERGY 2025年 392卷
作者: Qi, Qi Zhang, Deying Hu, Xiang Li, Xiao Qi, Bing North China Elect Power Univ Sch Elect & Elect Engn Beijing 102206 Peoples R China
The escalating deployment of 5G base stations (BSs) and self-service battery swapping cabinets (BSCs) in urban distribution networks has raised concerns regarding electricity consumption and power efficiency due to th... 详细信息
来源: 评论
A deep reinforcement learning approach for joint scheduling of cascade reservoir system
收藏 引用
JOURNAL OF HYDROLOGY 2025年 651卷
作者: Luo, Wei Wang, Chao Zhang, Yunhui Zhao, Jianshi Huang, Zhifeng Wang, Jiaqing Zhang, Chu Tsinghua Univ Sch Civil Engn Beijing 100084 Peoples R China China Inst Water Resources & Hydropower Beijing 100048 Peoples R China CHN Energy Dadu River Big Data Serv Co LTD Chengdu 610041 Sichuan Peoples R China
With the increasing requirements on accurately scheduling of cascade hydropower reservoirs, traditional scheduling models are struggling to provide optimal scheduling decisions under uncertain environments. In this st... 详细信息
来源: 评论
Deep Reinforcement Learning-Driven Collaborative Rounding-Up for Multiple Unmanned Aerial Vehicles in Obstacle Environments
收藏 引用
DRONES 2024年 第9期8卷 464-464页
作者: Zhao, Zipeng Wan, Yu Chen, Yong Natl Univ Def Technol Lab Big Data & Decis Changsha 410003 Peoples R China Chengdu Fluid Dynam Innovat Ctr 75 West 2nd Sect2nd Ring Rd Chengdu 610071 Peoples R China Sun Yat Sen Univ Sch Syst Sci & Engn Guangzhou 510275 Peoples R China
With the rapid advancement of UAV technology, the utilization of multi-UAV cooperative operations has become increasingly prevalent in various domains, including military and civilian applications. However, achieving ... 详细信息
来源: 评论
Optimal Operable Power Flow: Sample-Efficient Holomorphic Embedding-Based Reinforcement Learning
收藏 引用
IEEE TRANSACTIONS ON POWER SYSTEMS 2024年 第1期39卷 1739-1751页
作者: Sayed, Ahmed Rabee Zhang, Xian Wang, Guibin Wang, Cheng Qiu, Jing Harbin Inst Technol Sch Mech Engn & Automat Shenzhen 518055 Peoples R China Cairo Univ Elect Power & Machines Dept Fac Engn Giza 12411 Egypt Shenzhen Univ Coll Mechatron & Control Engn Shenzhen 518060 Peoples R China North China Elect Power Univ Sch Elect & Elect Engn Beijing 102206 Peoples R China Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia
The nonlinearity of physical power flow equations divides the decision-making space into operable and non-operable regions. Therefore, existing control techniques could be attracted to non-operable mathematically-feas... 详细信息
来源: 评论
Enhanced hierarchical reinforcement learning for co-optimization of HVAC system operations
收藏 引用
JOURNAL OF BUILDING ENGINEERING 2025年 106卷
作者: Zhou, Xuan Li, Junqiang Mo, Haohua Yan, Junwei Liang, Liequan Pan, Dongmei South China Univ Technol Sch Mech & Automot Engn 381 Wushan Rd Guangzhou 510640 Peoples R China South China Univ Technol Guangzhou Inst Modern Ind Technol Guangzhou 510640 Peoples R China Guangdong Artificial Intelligence & Digital Econ L Guangzhou 510330 Peoples R China Guangdong Univ Finance & Econ Sch Informat Sci Guangzhou 510220 Peoples R China
In the future, building energy consumption is expected to account for approximately 50 % of global energy use, with central air conditioning systems contributing to over 40 % of this consumption. Therefore, enhancing ... 详细信息
来源: 评论
CONTROLLED SENSING AND ANOMALY DETECTION VIA soft actor-critic REINFORCEMENT LEARNING  47
CONTROLLED SENSING AND ANOMALY DETECTION VIA SOFT ACTOR-CRIT...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhong, Chen Gursoy, M. Cenk Velipasalar, Senem Syracuse Univ Dept Elect Engn & Comp Sci Syracuse NY 13244 USA
To address the anomaly detection problem in the presence of noisy observations and to tackle the tuning and efficient exploration challenges that arise in deep reinforcement learning algorithms, we in this paper propo... 详细信息
来源: 评论
Cascaded Deep Reinforcement Learning-Based Multi-Revolution Low-Thrust Spacecraft Orbit-Transfer
收藏 引用
IEEE ACCESS 2023年 11卷 82894-82911页
作者: Zaidi, Syed Muhammad Talha Chadalavada, Pardha Sai Ullah, Hayat Munir, Arslan Dutta, Atri Kansas State Univ Dept Comp Sci Manhattan KS 66506 USA Wichita State Univ Dept Aerosp Engn Wichita KS 67260 USA
Transferring an all-electric spacecraft from a launch injection orbit to the geosynchronous equatorial orbit (GEO) using a low thrust propulsion system presents a significant challenge due to the long transfer time ty... 详细信息
来源: 评论
Feasibility Constrained Online Calculation for Real-Time Optimal Power Flow: A Convex Constrained Deep Reinforcement Learning Approach
收藏 引用
IEEE TRANSACTIONS ON POWER SYSTEMS 2023年 第6期38卷 5215-5227页
作者: Sayed, Ahmed Rabee Wang, Cheng Anis, Hussein I. Bi, Tianshu North China Elect Power Univ Sch Elect & Elect Engn Beijing 102206 Peoples R China Cairo Univ Fac Engn Elect Power & Machines Dept Giza 12411 Egypt
Due to the increasing uncertainties of renewable energy and stochastic demands, quick-optimal control actions are necessary to retain the system stability and economic operation. Existing optimal power flow (OPF) solu... 详细信息
来源: 评论