咨询与建议

限定检索结果

文献类型

  • 5 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 8 篇 计算机科学与技术...
    • 7 篇 软件工程

主题

  • 8 篇 software enginee...
  • 1 篇 binding
  • 1 篇 slr
  • 1 篇 cross-ecosystem ...
  • 1 篇 deep learning
  • 1 篇 ml in production
  • 1 篇 empirical softwa...
  • 1 篇 mlops
  • 1 篇 machine learning...
  • 1 篇 meta summary
  • 1 篇 tensorflow
  • 1 篇 data-centric ai
  • 1 篇 machine learning...
  • 1 篇 pytorch
  • 1 篇 agile developmen...
  • 1 篇 software quality
  • 1 篇 machine learning
  • 1 篇 challenges and b...
  • 1 篇 software package...
  • 1 篇 api contracts

机构

  • 2 篇 univ alberta ana...
  • 1 篇 univ toronto on
  • 1 篇 huawei canada ct...
  • 1 篇 univ cent florid...
  • 1 篇 carnegie mellon ...
  • 1 篇 sap montreal mon...
  • 1 篇 iowa state univ ...
  • 1 篇 univ augsburg so...
  • 1 篇 osaka inst techn...
  • 1 篇 univ augsburg in...
  • 1 篇 carnegie mellon ...
  • 1 篇 concordia univ m...
  • 1 篇 waseda univ
  • 1 篇 polytech montrea...
  • 1 篇 bradley univ dep...

作者

  • 2 篇 li hao
  • 2 篇 stieler fabian
  • 2 篇 bezemer cor-paul
  • 1 篇 yoshioka nobukaz...
  • 1 篇 khomh foutse
  • 1 篇 honda kiyoshi
  • 1 篇 baul bernhard
  • 1 篇 watanabe yasuhir...
  • 1 篇 ahmed shibbir
  • 1 篇 rahman md saidur
  • 1 篇 imtiaz sayem moh...
  • 1 篇 bauer bernhard
  • 1 篇 rajan hridesh
  • 1 篇 rajbahadur gopi ...
  • 1 篇 lewis grace
  • 1 篇 washizaki hirono...
  • 1 篇 saito daisuke
  • 1 篇 fukazawa yoshiak...
  • 1 篇 zhang haoran
  • 1 篇 zhou shurui

语言

  • 8 篇 英文
检索条件"主题词=Software Engineering for Machine Learning"
8 条 记 录,以下是1-10 订阅
Bridging the language gap: an empirical study of bindings for open source machine learning libraries across software package ecosystems
收藏 引用
EMPIRICAL software engineering 2025年 第1期30卷 1-31页
作者: Li, Hao Bezemer, Cor-Paul Univ Alberta Analyt Software Games & Repository Data ASGAARD La Edmonton AB Canada
Open source machine learning (ML) libraries enable developers to integrate advanced ML functionality into their own applications. However, popular ML libraries, such as TensorFlow, are not available natively in all pr... 详细信息
来源: 评论
Studying the Impact of TensorFlow and PyTorch Bindings on machine learning software Quality
收藏 引用
ACM TRANSACTIONS ON software engineering AND METHODOLOGY 2025年 第1期34卷 1-31页
作者: Li, Hao Rajbahadur, Gopi krishnan Bezemer, Cor-paul Univ Alberta Analyt Software GAmes & Repository Data ASGAARD La Edmonton AB Canada Huawei Canada Ctr Software Excellence Kingston ON Canada
Bindings for machine learning frameworks (such as TensorFlow and PyTorch) allow developers to integrate a framework's functionality using a programming language different from the framework's default language ... 详细信息
来源: 评论
What kinds of contracts do ML APIs need?
收藏 引用
EMPIRICAL software engineering 2023年 第6期28卷 1-37页
作者: Khairunnesa, Samantha Syeda Ahmed, Shibbir Imtiaz, Sayem Mohammad Rajan, Hridesh Leavens, Gary T. Bradley Univ Dept Comp Sci & Informat Syst Peoria IL 61625 USA Iowa State Univ Dept Comp Sci Ames IA USA Univ Cent Florida Dept Comp Sci Orlando FL USA
Recent work has shown that machine learning (ML) programs are error-prone and called for contracts for ML code. Contracts, as in the design by contract methodology, help document APIs and aid API users in writing corr... 详细信息
来源: 评论
Enhancing Collaboration and Agility in Data-Centric AI Projects  1
收藏 引用
18th International Conference on Evaluation of Novel Approaches to software engineering (ENASE)
作者: Stieler, Fabian Baul, Bernhard Univ Augsburg Software Methodol Distributed Syst Augsburg Germany
Usually, mature Artificial Intelligence (AI) projects are developed by a team of various members, such as data engineers, data scientists, software engineers and machine learning (ML) engineers. They often pursue high... 详细信息
来源: 评论
A Meta-Summary of Challenges in Building Products with ML Components - Collecting Experiences from 4758+Practitioners  2
A Meta-Summary of Challenges in Building Products with ML Co...
收藏 引用
IEEE/ACM 2nd International Conference on AI engineering - software engineering for AI (CAIN)
作者: Nahar, Nadia Zhang, Haoran Lewis, Grace Zhou, Shurui Kastner, Christian Carnegie Mellon Univ Pittsburgh PA 15213 USA Carnegie Mellon Software Engn Inst Pittsburgh PA 15213 USA Univ Toronto Toronto ON Canada
Incorporating machine learning (ML) components into software products raises new software-engineering challenges and exacerbates existing ones. Many researchers have invested significant effort in understanding the ch... 详细信息
来源: 评论
GitWorkflow for Active learning: A Development Methodology Proposal for Data-Centric AI Projects  18
GitWorkflow for Active Learning: A Development Methodology P...
收藏 引用
18th International Conference on Evaluation of Novel Approaches to software engineering (ENASE)
作者: Stieler, Fabian Bauer, Bernhard Univ Augsburg Inst Comp Sci Augsburg Germany
As soon as Artificial Intelligence (AI) projects grow from small feasibility studies to mature projects, developers and data scientists face new challenges, such as collaboration with other developers, versioning data... 详细信息
来源: 评论
Challenges in machine learning Application Development: An Industrial Experience Report  1
Challenges in Machine Learning Application Development: An I...
收藏 引用
1st IEEE/ACM International Workshop on software engineering for Responsible Artificial Intelligence (SE4RAI)
作者: Rahman, Md Saidur Khomh, Foutse Rivera, Emilio Gueheneuc, Yann-Gael Lehnert, Bernd Polytech Montreal Montreal PQ Canada Concordia Univ Montreal PQ Canada SAP Montreal Montreal PQ Canada
SAP is the market leader in enterprise application software offering an end-to-end suite of applications and services to enable their customers worldwide to operate their business. Especially, retail customers of SAP ... 详细信息
来源: 评论
Preliminary Literature Review of machine learning System Development Practices  45
Preliminary Literature Review of Machine Learning System Dev...
收藏 引用
45th Annual International IEEE-Computer-Society Computers, software, and Applications Conference (COMPSAC)
作者: Watanabe, Yasuhiro Washizaki, Hironori Sakamoto, Kazunori Saito, Daisuke Honda, Kiyoshi Tsuda, Naohiko Fukazawa, Yoshiaki Yoshioka, Nobukazu Waseda Univ Tokyo Japan Osaka Inst Technol Osaka Japan
To guide practitioners and researchers to design and research machine learning (ML) system development processes, we conduct a preliminary literature review on ML system development practices. We identified seven pape... 详细信息
来源: 评论