咨询与建议

限定检索结果

文献类型

  • 204 篇 会议
  • 90 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 295 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 285 篇 工学
    • 193 篇 电气工程
    • 157 篇 计算机科学与技术...
    • 68 篇 软件工程
    • 56 篇 信息与通信工程
    • 28 篇 电子科学与技术(可...
    • 23 篇 控制科学与工程
    • 16 篇 仪器科学与技术
    • 5 篇 船舶与海洋工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 网络空间安全
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 142 篇 理学
    • 122 篇 物理学
    • 13 篇 生物学
    • 10 篇 化学
    • 6 篇 系统科学
    • 3 篇 生态学
  • 63 篇 医学
    • 61 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 10 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 4 篇 农学
    • 1 篇 畜牧学
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 艺术学
    • 1 篇 音乐与舞蹈学

主题

  • 295 篇 sound event dete...
  • 33 篇 deep learning
  • 21 篇 semi-supervised ...
  • 17 篇 convolutional re...
  • 16 篇 acoustic scene c...
  • 15 篇 event detection
  • 12 篇 transformer
  • 12 篇 feature extracti...
  • 12 篇 convolutional ne...
  • 11 篇 audio tagging
  • 10 篇 task analysis
  • 9 篇 data augmentatio...
  • 8 篇 deep neural netw...
  • 8 篇 sound source loc...
  • 8 篇 few-shot learnin...
  • 8 篇 source separatio...
  • 8 篇 convolutional ne...
  • 7 篇 neural networks
  • 7 篇 multi-task learn...
  • 6 篇 vibration

机构

  • 7 篇 doshisha univ ky...
  • 6 篇 univ chinese aca...
  • 6 篇 univ sci & techn...
  • 6 篇 tsinghua univ de...
  • 5 篇 ritsumeikan univ...
  • 5 篇 fortemedia singa...
  • 5 篇 johns hopkins un...
  • 5 篇 singapore inst t...
  • 4 篇 univ lorraine cn...
  • 4 篇 univ surrey ctr ...
  • 4 篇 iflytek co ltd i...
  • 3 篇 carnegie mellon ...
  • 3 篇 northeastern uni...
  • 3 篇 adobe res ca usa
  • 3 篇 chongqing univ p...
  • 3 篇 tampere univ fac...
  • 3 篇 queen mary univ ...
  • 3 篇 department of si...
  • 2 篇 univ sci & techn...
  • 2 篇 univ hafr al bat...

作者

  • 16 篇 imoto keisuke
  • 15 篇 virtanen tuomas
  • 12 篇 mesaros annamari...
  • 10 篇 song yan
  • 10 篇 mcloughlin ian
  • 9 篇 heittola toni
  • 8 篇 serizel romain
  • 7 篇 benetos emmanoui...
  • 6 篇 salamon justin
  • 6 篇 das rohan kumar
  • 6 篇 dai li-rong
  • 5 篇 tonami noriyuki
  • 5 篇 bello juan pablo
  • 5 篇 wang wenwu
  • 5 篇 wang xiangdong
  • 5 篇 elhilali mounya
  • 5 篇 farella elisabet...
  • 5 篇 plumbley mark d.
  • 4 篇 xu xuenan
  • 4 篇 park sangwook

语言

  • 288 篇 英文
  • 7 篇 其他
检索条件"主题词=Sound Event Detection"
295 条 记 录,以下是1-10 订阅
排序:
Semi-supervised sound event detection with dynamic convolution and confidence-aware mean teacher
收藏 引用
DIGITAL SIGNAL PROCESSING 2025年 156卷
作者: Xiao, Shengchang Zhang, Xueshuai Zhang, Pengyuan Yan, Yonghong Chinese Acad Sci Inst Acoust Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
Recently, sound event detection (SED) has made significant advancements through the application of deep learning, but there are still many difficulties and challenges to be addressed. One of the major challenges is th... 详细信息
来源: 评论
Edge computing for driving safety: evaluating deep learning models for cost-effective sound event detection
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第1期81卷 1-15页
作者: Castorena, Carlos Lopez-Ballester, Jesus De Rus, Juan A. Cobos, Maximo Ferri, Francesc J. Univ Valencia Comp Sci Dept Burjassot Spain
This paper addresses road safety concerns by investigating low-cost solutions for sound event detection (SED) tailored to driving scenarios. While advanced technologies like deep learning hold promise for improving ro... 详细信息
来源: 评论
MTDA-HSED: Mutual-Assistance Tuning and Dual-Branch Aggregating for Heterogeneous sound event detection
MTDA-HSED: Mutual-Assistance Tuning and Dual-Branch Aggregat...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Wang, Zehao Yue, Haobo Zhang, Zhicheng Mu, Da Tang, Jin Yin, Jianqin School of Artificial Intelligence Beijing University of Posts and Telecommunications China School of Intelligent Engineering and Automation Beijing University of Posts and Telecommunications China
sound event detection (SED) plays a vital role in comprehending and perceiving acoustic scenes. Previous methods have demonstrated impressive capabilities. However, they are deficient in learning features of complex s... 详细信息
来源: 评论
Frequency-Aware Convolution for sound event detection  31st
Frequency-Aware Convolution for Sound Event Detection
收藏 引用
31st International Conference on Multimedia Modeling
作者: Song, Tao Zhang, Wenwen Kuaishou Technol Beijing Peoples R China Beijing Univ Posts & Telecommun Beijing Peoples R China
In sound event detection (SED), convolutional neural networks (CNNs) are widely employed to extract time-frequency (TF) patterns from spectrograms. However, the ability of CNNs to recognize different sound events is l... 详细信息
来源: 评论
UCIL: An Unsupervised Class Incremental Learning Approach for sound event detection
UCIL: An Unsupervised Class Incremental Learning Approach fo...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Xiao, Yang Das, Rohan Kumar Fortemedia Singapore Singapore
This work explores class-incremental learning (CIL) for sound event detection (SED), advancing adaptability towards real-world scenarios. CIL's success in domains like computer vision inspired our SED-tailored met... 详细信息
来源: 评论
Prototype based Masked Audio Model for Self-Supervised Learning of sound event detection
Prototype based Masked Audio Model for Self-Supervised Learn...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Cai, Pengfei Song, Yan Jiang, Nan Gu, Qing McLoughlin, Ian National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China China ICT Cluster Singapore Institute of Technology Singapore
A significant challenge in sound event detection (SED) is the effective utilization of unlabeled data, given the limited availability of labeled data due to high annotation costs. Semi-supervised algorithms rely on la... 详细信息
来源: 评论
Formula-Supervised sound event detection: Pre-Training Without Real Data
Formula-Supervised Sound Event Detection: Pre-Training Witho...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Shibata, Yuto Tanaka, Keitaro Bando, Yoshiaki Imoto, Keisuke Kataoka, Hirokatsu Aoki, Yoshimitsu Keio University Japan Japan Waseda University Japan Doshisha University Japan University of Oxford United Kingdom
In this paper, we propose a novel formula-driven supervised learning (FDSL) framework for pre-training an environmental sound analysis model by leveraging acoustic signals parametrically synthesized through formula-dr... 详细信息
来源: 评论
Debiased Training For Semi-supervised sound event detection
Debiased Training For Semi-supervised Sound Event Detection
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Xiao, Shengchang Zhang, Xueshuai Zhang, Pengyuan Yan, Yonghong Key Laboratory of Speech Acoustics and Content Understanding Institute of Acoustics Chinese Academy of Sciences University of Chinese Academy of Sciences China
Recently, semi-supervised sound event detection has attracted increasing research interest due to the scarcity of labeled data. However, traditional semi-supervised learning methods can lead to training instability an... 详细信息
来源: 评论
ASiT-CRNN: A method for sound event detection with fine-tuning of self-supervised pre-trained ASiT-based model
收藏 引用
DIGITAL SIGNAL PROCESSING 2025年 160卷
作者: Zheng, Yueyang Zhang, Ruikun Atito, Sara Yang, Shuguo Wang, Wenwu Mei, Yiduo Qingdao Univ Sci & Technol Sch Math & Phys Qingdao Peoples R China Univ Surrey Ctr Vis Speech & Signal Proc CVSSP Ctr Vis Speech & Signal Proc CVSSP Guildford England Inspur Yunzhou Ind Internet Co Ltd Jinan Peoples R China
Recently, the utilization of pre-trained models to transfer knowledge to downstream tasks has become an increasing trend. In this paper, we present an effective sound event detection (SED) method, which improves the p... 详细信息
来源: 评论
Multi-granularity acoustic information fusion for sound event detection
收藏 引用
SIGNAL PROCESSING 2025年 227卷
作者: Yin, Han Chen, Jianfeng Bai, Jisheng Wang, Mou Rahardja, Susanto Shi, Dongyuan Gan, Woon-seng Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710072 Peoples R China Chinese Acad Sci Inst Acoust Beijing 100190 Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore
Most previous works on sound event detection (SED) are based on binary hard labels of sound events, leaving other scales of information underexplored. To address this problem, we introduce multiple granularities of kn... 详细信息
来源: 评论