咨询与建议

限定检索结果

文献类型

  • 204 篇 会议
  • 90 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 295 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 285 篇 工学
    • 193 篇 电气工程
    • 157 篇 计算机科学与技术...
    • 68 篇 软件工程
    • 56 篇 信息与通信工程
    • 28 篇 电子科学与技术(可...
    • 23 篇 控制科学与工程
    • 16 篇 仪器科学与技术
    • 5 篇 船舶与海洋工程
    • 3 篇 机械工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 网络空间安全
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 142 篇 理学
    • 122 篇 物理学
    • 13 篇 生物学
    • 10 篇 化学
    • 6 篇 系统科学
    • 3 篇 生态学
  • 63 篇 医学
    • 61 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 10 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 4 篇 农学
    • 1 篇 畜牧学
  • 2 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 艺术学
    • 1 篇 音乐与舞蹈学

主题

  • 295 篇 sound event dete...
  • 33 篇 deep learning
  • 21 篇 semi-supervised ...
  • 17 篇 convolutional re...
  • 16 篇 acoustic scene c...
  • 15 篇 event detection
  • 12 篇 transformer
  • 12 篇 feature extracti...
  • 12 篇 convolutional ne...
  • 11 篇 audio tagging
  • 10 篇 task analysis
  • 9 篇 data augmentatio...
  • 8 篇 deep neural netw...
  • 8 篇 sound source loc...
  • 8 篇 few-shot learnin...
  • 8 篇 source separatio...
  • 8 篇 convolutional ne...
  • 7 篇 neural networks
  • 7 篇 multi-task learn...
  • 6 篇 vibration

机构

  • 7 篇 doshisha univ ky...
  • 6 篇 univ chinese aca...
  • 6 篇 univ sci & techn...
  • 6 篇 tsinghua univ de...
  • 5 篇 ritsumeikan univ...
  • 5 篇 fortemedia singa...
  • 5 篇 johns hopkins un...
  • 5 篇 singapore inst t...
  • 4 篇 univ lorraine cn...
  • 4 篇 univ surrey ctr ...
  • 4 篇 iflytek co ltd i...
  • 3 篇 carnegie mellon ...
  • 3 篇 northeastern uni...
  • 3 篇 adobe res ca usa
  • 3 篇 chongqing univ p...
  • 3 篇 tampere univ fac...
  • 3 篇 queen mary univ ...
  • 3 篇 department of si...
  • 2 篇 univ sci & techn...
  • 2 篇 univ hafr al bat...

作者

  • 16 篇 imoto keisuke
  • 15 篇 virtanen tuomas
  • 12 篇 mesaros annamari...
  • 10 篇 song yan
  • 10 篇 mcloughlin ian
  • 9 篇 heittola toni
  • 8 篇 serizel romain
  • 7 篇 benetos emmanoui...
  • 6 篇 salamon justin
  • 6 篇 das rohan kumar
  • 6 篇 dai li-rong
  • 5 篇 tonami noriyuki
  • 5 篇 bello juan pablo
  • 5 篇 wang wenwu
  • 5 篇 wang xiangdong
  • 5 篇 elhilali mounya
  • 5 篇 farella elisabet...
  • 5 篇 plumbley mark d.
  • 4 篇 xu xuenan
  • 4 篇 park sangwook

语言

  • 288 篇 英文
  • 7 篇 其他
检索条件"主题词=Sound Event Detection"
295 条 记 录,以下是81-90 订阅
排序:
GUIDED LEARNING FOR WEAKLY-LABELED SEMI-SUPERVISED sound event detection
GUIDED LEARNING FOR WEAKLY-LABELED SEMI-SUPERVISED SOUND EVE...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Lin, Liwei Wang, Xiangdong Liu, Hong Qian, Yueliang Chinese Acad Sci Inst Comp Technol Bejing Key Lab Mobile Comp & Pervas Device Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
We propose a simple but efficient method termed Guided Learning for weakly-labeled semi-supervised sound event detection (SED). There are two sub-targets implied in weakly-labeled SED: audio tagging and boundary detec... 详细信息
来源: 评论
FINE-TUNE THE PRETRAINED ATST MODEL FOR sound event detection  49
FINE-TUNE THE PRETRAINED ATST MODEL FOR SOUND EVENT DETECTIO...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Shao, Nian Li, Xian Li, Xiaofei Zhejiang Univ Hangzhou Peoples R China Westlake Univ Sch Engn Hangzhou Peoples R China Westlake Inst Adv Study Inst Adv Technol Hangzhou Peoples R China
sound event detection (SED) often suffers from the data deficiency problem. Recent SED systems leverage the large pretrained self-supervised learning (SelfSL) models to mitigate such restriction, where the pretrained ... 详细信息
来源: 评论
Leveraging Audio-Tagging Assisted sound event detection using Weakified Strong Labels and Frequency Dynamic Convolutions  22
Leveraging Audio-Tagging Assisted Sound Event Detection usin...
收藏 引用
22nd IEEE Statistical Signal Processing Workshop (SSP)
作者: Khandelwal, Tanmay Das, Rohan Kumar Koh, Andrew Chng, Eng Siong Fortemedia Singapore Singapore Singapore Nanyang Technol Univ Singapore Singapore
Jointly learning from a small labeled set and a larger unlabeled set is an active research topic under semi-supervised learning (SSL). In this paper, we propose a novel SSL method based on a two-stage framework for le... 详细信息
来源: 评论
Adaptive Few-Shot Learning Algorithm for Rare sound event detection
Adaptive Few-Shot Learning Algorithm for Rare Sound Event De...
收藏 引用
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Zhao, Chendong Wang, Jianzong Li, Leilai Qu, Xiaoyang Xiao, Jing Ping An Technol Shenzhen Co Ltd Shenzhen Peoples R China Tsinghua Univ Shenzhen Int Grad Sch Shenzhen Peoples R China
sound event detection is to infer the event by understanding the surrounding environmental sounds. Due to the scarcity of rare sound events, it becomes challenging for the well-trained detectors which have learned too... 详细信息
来源: 评论
A Task-Specific Meta-Learning Framework for Few-Shot sound event detection  24
A Task-Specific Meta-Learning Framework for Few-Shot Sound E...
收藏 引用
IEEE 24th International Workshop on Multimedia Signal Processing (MMSP)
作者: Zhang, Tianyang Yang, Liping Gu, Xiaohua Wang, Yuyang Chongqing Univ Key Lab Optoelect Technol & Syst MOE Chongqing Peoples R China Chongqing Univ Sci & Technol Sch Elect Engn Chongqing Peoples R China
Meta-learning is extensively used for few-shot learning. Prototypical Network (ProtoNet) has been proved to perform well for few-shot sound event detection. ProtoNet as a metalearning method consists of two stages: me... 详细信息
来源: 评论
A FRAMEWORK FOR THE ROBUST EVALUATION OF sound event detection
A FRAMEWORK FOR THE ROBUST EVALUATION OF SOUND EVENT DETECTI...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Bilen, Cagdas Ferroni, Giacomo Tuveri, Francesco Azcarreta, Juan Krstulovic, Sacha Audio Analyt AA Labs 2 Quayside Cambridge CB5 8AB England
This work defines a new framework for performance evaluation of polyphonic sound event detection (SED) systems, which overcomes the limitations of the conventional collar-based event decisions, event F-scores and even... 详细信息
来源: 评论
A JOINT SEPARATION-CLASSIFICATION MODEL FOR sound event detection OF WEAKLY LABELLED DATA
A JOINT SEPARATION-CLASSIFICATION MODEL FOR SOUND EVENT DETE...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Kong, Qiuqiang Xu, Yong Wang, Wenwu Plumbley, Mark D. Univ Surrey Ctr Vis Speech & Signal Proc Surrey England
Source separation (SS) aims to separate individual sources from an audio recording. sound event detection (SED) aims to detect sound events from an audio recording. We propose a joint separation-classification (JSC) m... 详细信息
来源: 评论
Augmented Strategy For Polyphonic sound event detection
Augmented Strategy For Polyphonic Sound Event Detection
收藏 引用
Annual Summit and Conference of the Asia-Pacific-Signal-and-Information-Processing-Association (APSIPA ASC)
作者: Wang, Bolun Fu, Zhong-Hua Wu, Hao Northwestern Polytech Univ Sch Comp Sci Xian Peoples R China Xian IFLYTEK Hyper Brain Informat Technol Co Ltd Xian Peoples R China
sound event detection is an important issue for many applications like audio content retrieval, intelligent monitoring, and scene-based interaction. The traditional studies on this topic are mainly focusing on identif... 详细信息
来源: 评论
Learning How to Listen: A Temporal-Frequential Attention Model for sound event detection  20
Learning How to Listen: A Temporal-Frequential Attention Mod...
收藏 引用
Interspeech Conference
作者: Shen, Yu-Han He, Ke-Xin Zhang, Wei-Qiang Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China
In this paper, we propose a temporal-frequential attention model for sound event detection (SED). Our network learns how to listen with two attention models: a temporal attention model and a frequential attention mode... 详细信息
来源: 评论
JOINT ACOUSTIC AND CLASS INFERENCE FOR WEAKLY SUPERVISED sound event detection  44
JOINT ACOUSTIC AND CLASS INFERENCE FOR WEAKLY SUPERVISED SOU...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Kothinti, Sandeep Imoto, Keisuke Chakrabarty, Debmalya Sell, Gregory Watanabe, Shinji Elhilali, Mounya Johns Hopkins Univ Dept Elect & Comp Engn Baltimore MD 21218 USA Ritsumeikan Univ Coll Informat Sci & Engn Shiga Japan Johns Hopkins Univ Human Language Technol Ctr Excellence Baltimore MD USA
sound event detection is a challenging task, especially for scenes with multiple simultaneous events. While event classification methods tend to be fairly accurate, event localization presents additional challenges, e... 详细信息
来源: 评论