咨询与建议

限定检索结果

文献类型

  • 33 篇 会议
  • 13 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 45 篇 工学
    • 30 篇 电气工程
    • 25 篇 计算机科学与技术...
    • 7 篇 信息与通信工程
    • 6 篇 软件工程
    • 3 篇 生物医学工程(可授...
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
  • 25 篇 理学
    • 25 篇 物理学
    • 2 篇 生物学
  • 13 篇 医学
    • 12 篇 临床医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 口腔医学
    • 1 篇 护理学(可授医学、...
  • 5 篇 文学
    • 2 篇 外国语言文学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 47 篇 source-filter mo...
  • 11 篇 speech synthesis
  • 9 篇 neural vocoder
  • 3 篇 generative adver...
  • 3 篇 linear predictio...
  • 2 篇 reservoir comput...
  • 2 篇 representation l...
  • 2 篇 variational auto...
  • 2 篇 voice signal
  • 2 篇 kernel methods
  • 2 篇 sinusoidal model
  • 2 篇 speech
  • 2 篇 speech processin...
  • 2 篇 voice modificati...
  • 2 篇 speech recogniti...
  • 2 篇 hmm
  • 2 篇 bayesian nonpara...
  • 2 篇 harmonic-plus-no...
  • 2 篇 voicing estimati...
  • 2 篇 fraud

机构

  • 2 篇 natl inst inform...
  • 2 篇 nagoya univ nago...
  • 2 篇 nagoya univ info...
  • 1 篇 univ sci & techn...
  • 1 篇 ovelin helsinki
  • 1 篇 school of music ...
  • 1 篇 natl inst adv in...
  • 1 篇 cnrs centralesup...
  • 1 篇 speech science s...
  • 1 篇 japan adv inst s...
  • 1 篇 univ birmingham ...
  • 1 篇 mcgill univ dept...
  • 1 篇 indian inst sci ...
  • 1 篇 technicolor f-35...
  • 1 篇 meta ai ny 10003...
  • 1 篇 univ grenoble al...
  • 1 篇 department of ph...
  • 1 篇 aix marseille un...
  • 1 篇 chinese acad sci...
  • 1 篇 tal education gr...

作者

  • 4 篇 toda tomoki
  • 3 篇 yoneyama reo
  • 3 篇 alku paavo
  • 3 篇 wu yi-chiao
  • 2 篇 yamagishi junich...
  • 2 篇 yu kai
  • 2 篇 rao achuth m. v
  • 2 篇 caetano marcelo
  • 2 篇 jancovic peter
  • 2 篇 bollepalli bajib...
  • 2 篇 rodet xavier
  • 2 篇 ghosh prasanta k...
  • 2 篇 liu zhijun
  • 2 篇 unoki masashi
  • 2 篇 koekueer muenevv...
  • 1 篇 shao xu
  • 1 篇 akagi masato
  • 1 篇 vincent remy
  • 1 篇 furuya ken'ichi
  • 1 篇 airaksinen manu

语言

  • 45 篇 英文
  • 2 篇 其他
检索条件"主题词=Source-filter model"
47 条 记 录,以下是1-10 订阅
排序:
A source-filter model FOR MUSICAL INSTRUMENT SOUND TRANSFORMATION
A SOURCE-FILTER MODEL FOR MUSICAL INSTRUMENT SOUND TRANSFORM...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Caetano, Marcelo Rodet, Xavier Analysis/Synthesis Team IRCAM France
The model used to represent musical instrument sounds plays a crucial role in the quality of sound transformations. Ideally, the representation should be compact and accurate, while its parameters should give flexibil... 详细信息
来源: 评论
A dual source-filter model of snore audio for snorer group classification  18
A dual source-filter model of snore audio for snorer group c...
收藏 引用
18th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2017)
作者: Rao, Achuth M., V Yadav, Shivani Ghosh, Prasanta Kumar Indian Inst Sci Elect Engn Bangalore 560012 Karnataka India Indian Inst Sci BioSyst Sci & Engn Bangalore 560012 Karnataka India
Snoring is a common symptom of serious chronic disease known as obstructive sleep apnea (OSA). Knowledge about the location of obstruction site (V- Velum, O- Oropharyngeal lateral walls, T-Tongue, E-Epiglottis) in the... 详细信息
来源: 评论
Robust Speech Analysis Based on source-filter model Using Multivariate Empirical Mode Decomposition in Noisy Environments  18th
Robust Speech Analysis Based on Source-Filter Model Using Mu...
收藏 引用
18th Speech and Computer International Conference (SPECOM)
作者: Boonkla, Surasak Unoki, Masashi Makhanov, Stanislav S. Japan Adv Inst Sci & Technol Sch Informat Sci Nomi Japan Thammasat Univ Sirindhorn Int Inst Technol Pathum Thani Thailand
This paper proposes a robust speech analysis method based on source-filter model using multivariate empirical mode decomposition (MEMD) under noisy conditions. The proposed method has two stages. At the first stage, m... 详细信息
来源: 评论
SFNet: A Computationally Efficient source filter model Based Neural Speech Synthesis
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2020年 27卷 1170-1174页
作者: Rao, Achuth M., V Ghosh, Prasanta Kumar Indian Inst Sci Dept Elect Engn Bangalore 560012 Karnataka India
Recently, neural speech synthesizers have achieved a high-quality synthesis for text-to-speech applications, but a real-time synthesis is possible only in the devices which have high memory and allow large computation... 详细信息
来源: 评论
Using Cyclic Noise as the source Signal for Neural source-filter-based Speech Waveform model  21
Using Cyclic Noise as the Source Signal for Neural Source-Fi...
收藏 引用
Interspeech Conference
作者: Wang, Xin Yamagishi, Junichi Natl Inst Informat Tokyo Japan Univ Edinburgh CSTR Edinburgh Midlothian Scotland
Neural source-filter (NSF) waveform models generate speech waveforms by morphing sine-based source signals through dilated convolution in the time domain. Although the sine-based source signals help the NSF models to ... 详细信息
来源: 评论
Vibrato in singing source-filter and voice: The link between sinusoidal models
收藏 引用
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING 2004年 第7期2004卷 1007-1020页
作者: Arroabarren, I Carlosena, A Univ Publ Navarra Dept Ingn Elect & Elect Pamplona 31006 Spain
The application of inverse filtering techniques for high-quality singing voice analysis/synthesis is discussed. In the context of source-filter models, inverse filtering provides a noninvasive method to extract the vo... 详细信息
来源: 评论
Learning and controlling the source-filter representation of speech with a variational autoencoder
收藏 引用
SPEECH COMMUNICATION 2023年 148卷 53-65页
作者: Sadok, Samir Leglaive, Simon Girin, Laurent Alameda-Pineda, Xavier Seguier, Renaud CNRS CentraleSupelec IETR UMR 6164 Paris France Univ Grenoble Alpes GIPSA Lab CNRS Grenoble INP Grenoble France Univ Grenoble Alpes Inria CNRS LJK Grenoble France
Understanding and controlling latent representations in deep generative models is a challenging yet important problem for analyzing, transforming and generating various types of data. In speech processing, inspiring f... 详细信息
来源: 评论
High-Fidelity and Pitch-Controllable Neural Vocoder Based on Unified source-filter Networks
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2023年 31卷 3717-3729页
作者: Yoneyama, Reo Wu, Yi-Chiao Toda, Tomoki Nagoya Univ Grad Sch Informat Nagoya 4648601 Japan Nagoya Univ Informat Technol Ctr Nagoya 4648601 Japan
We introduce unified source-filter generative adversarial networks (uSFGAN), a waveform generative model conditioned on acoustic features, which represents the source-filter architecture in a generator network. Unlike... 详细信息
来源: 评论
source-filter-Based Generative Adversarial Neural Vocoder for High Fidelity Speech Synthesis  1
收藏 引用
17th National Conference on Man-Machine Speech Communication
作者: Lu, Ye-Xin Ai, Yang Ling, Zhen-Hua Univ Sci & Technol China Natl Engn Res Ctr Speech & Language Informat Proc Hefei Peoples R China
This paper proposes a source-filter-based generative adversarial neural vocoder named SF-GAN, which achieves high-fidelity waveform generation from input acoustic features by introducing F0-based source excitation sig... 详细信息
来源: 评论
Unified source-filter GAN with Harmonic-plus-Noise source Excitation Generation  23
Unified Source-Filter GAN with Harmonic-plus-Noise Source Ex...
收藏 引用
Interspeech Conference
作者: Yoneyama, Reo Wu, Yi-Chiao Toda, Tomoki Nagoya Univ Nagoya Aichi Japan
This paper introduces a unified source-filter network with a harmonic-plus-noise source excitation generation mechanism. In our previous work, we proposed unified source-filter GAN (uSFGAN) for developing a high-fidel... 详细信息
来源: 评论