咨询与建议

限定检索结果

文献类型

  • 45 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 79 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 74 篇 工学
    • 47 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 16 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 7 篇 机械工程
    • 6 篇 仪器科学与技术
    • 5 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 15 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 11 篇 理学
    • 5 篇 数学
    • 4 篇 生物学
    • 2 篇 物理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 生态学
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学

主题

  • 79 篇 sparse auto-enco...
  • 17 篇 deep learning
  • 9 篇 fault diagnosis
  • 7 篇 feature extracti...
  • 6 篇 feature learning
  • 4 篇 transfer learnin...
  • 4 篇 deep neural netw...
  • 3 篇 compressed sensi...
  • 3 篇 svm
  • 3 篇 machine learning
  • 3 篇 classification
  • 3 篇 feature selectio...
  • 2 篇 intrusion detect...
  • 2 篇 structural healt...
  • 2 篇 gated recurrent ...
  • 2 篇 rolling bearing
  • 2 篇 offline text-ind...
  • 2 篇 support vector m...
  • 2 篇 auto-encoder
  • 2 篇 soft-max classif...

机构

  • 2 篇 tongji univ coll...
  • 2 篇 dongguan univ te...
  • 2 篇 sun yat sen univ...
  • 1 篇 nanyang technol ...
  • 1 篇 shiraz univ sch ...
  • 1 篇 leiden univ leid...
  • 1 篇 chinese acad sci...
  • 1 篇 east china univ ...
  • 1 篇 southwest jiaoto...
  • 1 篇 xiamen univ fuji...
  • 1 篇 dalian univ tech...
  • 1 篇 univ brasilia pr...
  • 1 篇 school of inform...
  • 1 篇 sichuan jingyi a...
  • 1 篇 southeast univ s...
  • 1 篇 chinese acad sci...
  • 1 篇 xi an jiao tong ...
  • 1 篇 univ sfax natl e...
  • 1 篇 school of commun...
  • 1 篇 minzu univ china...

作者

  • 2 篇 bai jing
  • 2 篇 wang wei
  • 2 篇 cury alexandre a...
  • 2 篇 long jianyu
  • 2 篇 lai jianhuang
  • 2 篇 barbosa flavio d...
  • 2 篇 zhang yi
  • 2 篇 finotti rafaelle...
  • 2 篇 wu yan
  • 1 篇 e tang
  • 1 篇 liu shangdong
  • 1 篇 huang fang
  • 1 篇 lv zheng
  • 1 篇 liu dong
  • 1 篇 chaolin zhang
  • 1 篇 guo yingqing
  • 1 篇 yang ran
  • 1 篇 li baoqing
  • 1 篇 she daoming
  • 1 篇 kumar bhardwaj a...

语言

  • 75 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=Sparse Auto-encoder"
79 条 记 录,以下是11-20 订阅
排序:
Locality-Constrained sparse auto-encoder for Image Classification
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2015年 第8期22卷 1070-1073页
作者: Luo, Wei Yang, Jian Xu, Wei Fu, Tao Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China
We propose a locality-constrained sparse auto-encoder (LSAE) for image classification in this letter. Previous work has shown that the locality is more essential than sparsity for classification task. We here introduc... 详细信息
来源: 评论
Deep sparse auto-encoder Features Learning for Arabic Text Recognition
收藏 引用
IEEE ACCESS 2021年 9卷 18569-18584页
作者: Rahal, Najoua Tounsi, Maroua Hussain, Amir Alimi, Adel M. Tunis El Manar Univ Fac Sci Tunis Tunis 2092 Tunisia Univ Sfax Natl Engn Sch Sfax ENIS REs Grp Intelligent Machines REGIM Lab Sfax 3038 Tunisia Edinburgh Napier Univ Sch Comp Edinburgh EH10 5DT Midlothian Scotland
One of the most recent challenging issues of pattern recognition and artificial intelligence is Arabic text recognition. This research topic is still a pervasive and unaddressed research field, because of several fact... 详细信息
来源: 评论
A sparse auto-encoder method based on compressed sensing and wavelet packet energy entropy for rolling bearing intelligent fault diagnosis
收藏 引用
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 2020年 第4期34卷 1445-1458页
作者: Shi, Peiming Guo, Xiaoci Han, Dongying Fu, Rongrong Yanshan Univ Sch Elect Engn Qinhuangdao 066004 Hebei Peoples R China Yanshan Univ Sch Vehicles & Energy Qinhuangdao 066004 Hebei Peoples R China
Improving diagnostic efficiency and shortening diagnostic time is important for improving the reliability and safety of rotating machinery, and has received more and more attention. When using intelligent diagnostic m... 详细信息
来源: 评论
Rolling bearing fault severity identification using deep sparse auto-encoder network with noise added sample expansion
收藏 引用
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY 2017年 第6期231卷 666-679页
作者: Chen, Renxiang Chen, Siyang He, Miao He, David Tang, Baoping Chongqing Jiaotong Univ Sch Mechatron & Vehicle Engn Chongqing Peoples R China Sichuan Univ Sch Aeronaut & Astronaut Chengdu Sichuan Peoples R China Univ Illinois Dept Mech & Ind Engn Chicago IL USA Northeastern Univ Minist Educ Key Lab Vibrat & Control Aero Prop Syst Shenyang Liaoning Peoples R China Northeastern Univ Sch Mech Engn & Automat Shenyang Liaoning Peoples R China Chongqing Univ State Key Lab Mech Transmiss Chongqing Peoples R China
This article presents a rolling bearing fault severity identification methodology that aims to adaptively extract fault severity features and intelligently identify the fault severity. The presented method is develope... 详细信息
来源: 评论
A novel SSD fault detection method using GRU-based sparse auto-encoder for dimensionality reduction
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022年 第4期43卷 4929-4946页
作者: Wang, Yufei Dong, Xiaoshe Wang, Longxiang Chen, Weiduo Chen, Heng Xi An Jiao Tong Univ Xian Ning West Rd 28 Xian 710049 Shaanxi Peoples R China
In recent years, with the development of flash memory technology, storage systems in large data centers are typically built upon thousands or even millions of solid-state drives (SSDs). Therefore, the failure of SSDs ... 详细信息
来源: 评论
A sparse auto-encoder-based deep neural network approach for induction motor faults classification
收藏 引用
MEASUREMENT 2016年 89卷 171-178页
作者: Sun, Wenjun Shao, Siyu Zhao, Rui Yan, Ruqiang Zhang, Xingwu Chen, Xuefeng Southeast Univ Sch Instrument Sci & Engn Nanjing 210096 Jiangsu Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Nanyang Ave Singapore 639798 Singapore Xi An Jiao Tong Univ Collaborat Innovat Ctr High End Mfg Equipment Xian 710049 Peoples R China
This paper presents a deep neural network (DNN) approach for induction motor fault diagnosis. The approach utilizes sparse auto-encoder (SAE) to learn features, which belongs to unsupervised feature learning that only... 详细信息
来源: 评论
A novel method of diagnosing premature ventricular contraction based on sparse auto-encoder and softmax regression
收藏 引用
BIO-MEDICAL MATERIALS AND ENGINEERING 2015年 第Sup1期26卷 S1549-S1558页
作者: Yang, Jianli Bai, Yang Li, Guojun Liu, Ming Liu, Xiuling Hebei Univ Coll Elect & Informat Engn Key Lab Digital Med Engn Hebei Prov Baoding 071000 Hebei Peoples R China
Premature ventricular contraction (PVC) is one of the most serious arrhythmias. Without early diagnosis and proper treatment, PVC can result in significant complications. In this paper, a novel feature extraction meth... 详细信息
来源: 评论
A Deep Learning Approach to Network Intrusion Detection Using a Proposed Supervised sparse auto-encoder and SVM
收藏 引用
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF ELECTRICAL ENGINEERING 2022年 第3期46卷 829-846页
作者: Ghorbani, Ali Fakhrahmad, Seyed Mostafa Shiraz Univ Sch Elect & Comp Engn Dept Comp Sci & Engn & IT Shiraz Iran
Due to the increasing use of communication technologies for data transmission, security threats have increased over the past decade. One of the essential solutions to detect threats is NIDSs. Over the past few years, ... 详细信息
来源: 评论
Estimation of spreading sequences in LC-DS-CDMA signals based on sparse auto-encoder
收藏 引用
EVOLUTIONARY INTELLIGENCE 2020年 第2期13卷 235-246页
作者: Qiang, Fangfang Zhao, Zhijin Shang, Junna Shen, Lei Hangzhou Dianzi Univ Sch Elect & Informat Hangzhou 310018 Peoples R China Hangzhou Dianzi Univ Sch Commun Engn Hangzhou 310018 Peoples R China Zhejiang Prov Key Lab Informat Proc Commun & Netw Hangzhou 310027 Peoples R China
A method based on a sparse auto-encoder (SAE) network for the estimation of spreading sequences in long-code direct-sequence code-division multiple access (LC-DS-CDMA) signals is proposed. First, a network classificat... 详细信息
来源: 评论
Application of sparse auto-encoder in Handwritten Digit Recognition  18
Application of Sparse auto-encoder in Handwritten Digit Reco...
收藏 引用
International Symposium on Big Data and Artificial Intelligence (ISBDAI)
作者: Zhou, Kaihong Qiao, Xinxin Shi, Jingkai Guilin Univ Technol Coll Mech & Control Engn Guilin 541004 Guangxi Peoples R China
Deep learning and non-supervised learning methods have a wide range of applications in image feature extraction. This article uses MATLAB to train a deep neural network to classify handwritten digital pictures. The de... 详细信息
来源: 评论