咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=Sparse AutoEncoder"
251 条 记 录,以下是101-110 订阅
排序:
K-Means Clustering Optimizing Deep Stacked sparse autoencoder
收藏 引用
SENSING AND IMAGING 2019年 第1期20卷 6-6页
作者: Bi, Yandong Wang, Peng Guo, Xuchao Wang, Zhijun Cheng, Shuhan Shandong Agr Univ Coll Informat Sci & Engn Tai An 271018 Shandong Peoples R China
Because of the large structure and long training time, the development cycle of the common depth model is prolonged. How to speed up training is a problem deserving of study. In order to accelerate training, K-means c... 详细信息
来源: 评论
A sparse autoencoder Based Denosing the Spectrum Signal in LIBS
A Sparse Autoencoder Based Denosing the Spectrum Signal in L...
收藏 引用
第30届中国控制与决策会议
作者: Shibing Ye Zhixing Niu Peng Yang Junqing Sun Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology Tianjin University of Technology
Based on laser induced breakdown spectroscopy(LIBS) technique, the content of the main elements in the liquid steel of carbon steel alloy can be detected in real time during melting process. In order to detect the liq... 详细信息
来源: 评论
Fault Diagnosis Based on Batch-normalized Stacked sparse autoencoder
Fault Diagnosis Based on Batch-normalized Stacked Sparse Aut...
收藏 引用
第三十九届中国控制会议
作者: Liu Xiaozhi Gao Yang Yang Yinghua College of Information Science and Engineering Northeastern University
A fault diagnosis method based on batch-normalization stacked sparse autoencoder(SSAE) is presented in this paper. This paper use the autoencoder to extract features for fault diagnosis on account of its good performa... 详细信息
来源: 评论
Transformer Fault Diagnosis based on Deep Brief sparse autoencoder
Transformer Fault Diagnosis based on Deep Brief Sparse Autoe...
收藏 引用
第三十八届中国控制会议
作者: Zhong Xu Wenxiong Mo Yong Wang Simin Luo Tian Liu Electric Power Test & Research Institute Guangzhou Power Supply Bureau Co. Ltd
Dissolved gas analysis(DGA) is an effective way to diagnose the internal faults of transformer. This paper proposes a deep belief sparse autoencoder(DBSAE), which can be performed on DGA data to detect the transformer... 详细信息
来源: 评论
Pseudoinverse Learning Algorithom for Fast sparse autoencoder Training
Pseudoinverse Learning Algorithom for Fast Sparse Autoencode...
收藏 引用
IEEE Congress on Evolutionary Computation
作者: Bingxin Xu Ping Guo Beijing Key Laboratory of Information Service Engineering Beijing Union University Beijing China Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing 100875 China
sparse autoencoder is one approach to automatically learn features from unlabeled data and received significant attention during the development of deep neural networks. However, the learning algorithm of sparse autoe... 详细信息
来源: 评论
A novel stacked sparse denoising autoencoder for mammography restoration to visual interpretation of breast lesion
收藏 引用
EVOLUTIONARY INTELLIGENCE 2021年 第1期14卷 133-149页
作者: Ghosh, Swarup Kr Biswas, Biswajit Ghosh, Anupam Maulana Abul Kalam Azad Univ Technol Kolkata 700068 India Univ Calcutta Kolkata 700098 India Netaji Subhash Engn Coll Kolkata 700152 India
This paper proposes a deep unsupervised learning based denoising autoencoder model for the restoration of degraded mammogram with visual interpretation of breast lumps or lesion in mammography images (called SSDAE). T... 详细信息
来源: 评论
Face recognition based on deep aggregated sparse autoencoder network
Face recognition based on deep aggregated sparse autoencoder...
收藏 引用
第37届中国控制会议
作者: Guofeng Zou Dingyi Lin Gui-xia Fu Jin Shen Mingliang Gao College of Electrical and Electronic Engineering Shandong University of Technology
sparse autoencoder network is sensitive to face noise,and the learning process is easy to ignore the face structure *** this problem,we propose a face recognition approach fused sub-region LBP feature and deep aggrega... 详细信息
来源: 评论
Improved sparse autoencoder based artificial neural network approach for prediction of heart disease
收藏 引用
Informatics in Medicine Unlocked 2020年 18卷
作者: Mienye, Ibomoiye Domor Sun, Yanxia Wang, Zenghui Department of Electrical and Electronic Engineering Science University of Johannesburg Johannesburg 2006 South Africa Department of Electrical and Mining Engineering University of South Africa Florida 1709 South Africa
In this paper a two stage method is proposed to effectively predict heart disease. The first stage involves training an improved sparse autoencoder (SAE), an unsupervised neural network, to learn the best representati... 详细信息
来源: 评论
Classification of Alzheimer's Disease Using Stacked sparse Convolutional autoencoder  19
Classification of Alzheimer's Disease Using Stacked Sparse C...
收藏 引用
19th International Conference on Control, Automation and Systems (ICCAS)
作者: Baydargil, Husnu Baris Park, Jang-Sik Kang, Do-Young Kyungsung Univ Dept Elect & Commun Engn 309 Suyeong Ro Busan South Korea Dong A Univ Dong A Univ Hosp Dept Nucl Med Coll Med 37 Nakdong Daero550 Obaegosip BeHadan 2 I Dong Busan South Korea
Alzheimer's disease is a neurodegenerative disease that affects the brain structure and its functions. Early and accurate detection of AD through medical imaging may improve lifespan and overall quality of life fo... 详细信息
来源: 评论
Towards precision medicine in Glioblastoma: Unraveling MGMT methylation status in glioblastoma using adaptive sparse autoencoders
收藏 引用
EGYPTIAN INFORMATICS JOURNAL 2025年 29卷
作者: Fazal, Sumaiya Rehman, Hafeez Ur Alazab, Moutaz Natl Univ Comp & Emerging Sci Dept Comp Sci Islamabad Pakistan Liverpool John Moores Univ Oryx Universal Coll Sch Comp & Data Sci Doha Qatar Al Balqa Appl Univ Fac Artificial Intelligence Dept Intelligent Syst Al Salt Jordan
Glioblastoma is a type of cancer known for its fast growth, invasive behavior, and resistance to different treatments. It accounts for more than 50% of all malignant brain tumors. Due to its complexity, it is crucial ... 详细信息
来源: 评论