咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=Sparse AutoEncoder"
251 条 记 录,以下是181-190 订阅
排序:
A Rotating Machinery Fault Diagnosis Method for High-speed Trains Based on Improved Deep Learning Network  7
A Rotating Machinery Fault Diagnosis Method for High-speed T...
收藏 引用
7th International Conference on Control Automation and Information Sciences (ICCAIS)
作者: Yang, Jing Xie, Guo Yang, Yanxi Li, Xin Xian Univ Technol Sch Automat & Informat Engn Xian 710048 Shaanxi Peoples R China Tianshui Normal Univ Sch Mechatron & Automot Engn Tianshui 741000 Peoples R China
Rotating machinery is an important part of highspeed train system. Any failure of such components will have a serious impact on the service itself and even jeopardize the safe and reliable operation of the train. Howe... 详细信息
来源: 评论
Post-Processing of Unsupervised Dictionary Learning in Handwritten Digit Recognition  14
Post-Processing of Unsupervised Dictionary Learning in Handw...
收藏 引用
International Symposium on Communications and Information Technologies
作者: Phaisangittisagul, Ekachai Chongprachawat, Rapeepol Kasetsart Univ Fac Engn Dept Elect Engn Bangkok 10900 Thailand Kasetsart Univ Grad Sch Bangkok 10900 Thailand
To achieve high performance in object recognition, a high-level feature representation is play an essential role to transform a raw input data (low-level) into a new representation. Unsupervised feature learning is on... 详细信息
来源: 评论
Learning the Structure of Auto-Encoding Recommenders  20
Learning the Structure of Auto-Encoding Recommenders
收藏 引用
29th World Wide Web Conference (WWW)
作者: Khawar, Farhan Poon, Leonard Zhang, Nevin L. Hong Kong Univ Sci & Technol Hong Kong Peoples R China Educ Univ Hong Kong Hong Kong Peoples R China
autoencoder recommenders have recently shown state-of-the-art performance in the recommendation task due to their ability to model non-linear item relationships effectively. However, existing autoencoder recommenders ... 详细信息
来源: 评论
DISTRIBUTION PRESERVING NETWORK EMBEDDING  44
DISTRIBUTION PRESERVING NETWORK EMBEDDING
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Qin, Anyong Shang, Zhaowei Zhang, Taiping Tang, Yuan Yan Chongqing Univ Chongqing Peoples R China Univ Macau Macau Peoples R China
The deep autoencoder network which is based on constraining non-negative weights, can learn a low dimensional part-based representation. On the other hand, the inherent structure of the each data cluster can be descri... 详细信息
来源: 评论
High-speed Railway Clearance Surveillance System Based on Convolutional Neural Networks  8
High-speed Railway Clearance Surveillance System Based on Co...
收藏 引用
8th International Conference on Digital Image Processing (ICDIP)
作者: Wang, Yang Yu, Zujun Zhu, Liqiang Guo, Baoqing Beijing Jiaotong Univ Sch Mech Elect & Control Engn Beijing 100044 Peoples R China
In this paper, the convolutional neural networks with the pre-trained kernels are applied to the video surveillance system, which has been built along the Shanghai-Hangzhou high-speed railway to monitor the railway cl... 详细信息
来源: 评论
Occupancy Measurement by Object Tracking at Building Entrances  36
Occupancy Measurement by Object Tracking at Building Entranc...
收藏 引用
第36届中国控制会议
作者: Jianhong Zou Qianchuan Zhao Rui Cong Center for Intelligent and Networked Systems Department of AutomationTNLISTTsinghua University IEEE
Building occupancy measurement is becoming an increasingly important topic in the energy saving *** paper proposes an occupancy measurement algorithm based on visual object tracking at entrances of *** algorithm figur... 详细信息
来源: 评论
Convolutional autoencoder-based Color Image Classification using Chroma Subsampling in YCbCr Space  8
Convolutional Autoencoder-based Color Image Classification u...
收藏 引用
Proceedings 2015 8 International Congress on Image and Signal Processing (CISP)
作者: Li, Zuhe Fan, Yangyu Wang, Fengqin Northwestern Polytech Univ Sch Elect & Informat Xian Peoples R China Zhengzhou Univ Light Ind Sch Comp & Commun Engn Zhengzhou Peoples R China
We propose a convolutional autoencoder neural network for image classification in YCbCr color space to reduce computational complexity. We first learned local image features from image patches in YCbCr space with a sp... 详细信息
来源: 评论
A Deep Architecture for Face Recognition Based on Multiple Feature Extraction Techniques  5
A Deep Architecture for Face Recognition Based on Multiple F...
收藏 引用
IEEE International Conference on Signal and Image Processing Applications (ICSIPA)
作者: Albelwi, Saleh Mahmood, Ausif Univ Bridgeport Dept Comp Sci Bridgeport CT 06604 USA
Some of the best current face recognition approaches use feature extraction techniques based on either Principle Component Analysis (PCA), Local Binary Patterns (LBP), autoencoder (non-linear PCA), etc. While each of ... 详细信息
来源: 评论
Deep and Self-taught Learning for Protein Accessible Surface Area Prediction  15
Deep and Self-taught Learning for Protein Accessible Surface...
收藏 引用
15th International Conference on Frontiers of Information Technology (FIT)
作者: ul Hassan, Fahad Minhas, Fayyaz ul Amir Afsar DI Khan Inst Nucl Med & Radiotherapy Dera Ismail Khan Pakistan Pakistan Inst Engn & Appl Sci Dept Comp & Informat Sci Biomed Informat Res Lab Islamabad Pakistan
ASA captures the degree of burial or surface accessibility of a protein residue. It is a very important indicator of the behavior of amino acids within a protein as well. It can be used to find protein interactions, i... 详细信息
来源: 评论
A Stacking Ensemble Learning Model for Mental State Recognition towards Implementation of Brain Computer Interface  6
A Stacking Ensemble Learning Model for Mental State Recognit...
收藏 引用
6th National-Foundation-for Science-and-Technology-Development (NAFOSTED) Conference on Information and Computer Science (NICS)
作者: Hoang-Anh The Nguyen Thanh Ha Le The Duy Bui Vietnam Acad Sci & Technol Inst Informat Technol Hanoi Vietnam Vietnam Natl Univ Univ Engn & Technol Hanoi Vietnam
This paper presents a novel stacking ensemble learning model that aims at improving mental state classification for brain computer interface implementation. The proposed model combines machine learning based methods t... 详细信息
来源: 评论