咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=Sparse AutoEncoder"
251 条 记 录,以下是201-210 订阅
排序:
Hand gesture recognition using neural network based techniques  13
Hand gesture recognition using neural network based techniqu...
收藏 引用
13th Symposium on Neural Networks and Applications (NEUREL)
作者: Bobic, Vladislava Tadic, Predrag Kvascev, Goran Univ Belgrade Sch Elect Engn Bul Kralja Aleksandra 73 Belgrade 11120 Serbia
In this paper, two neural network based methods were implemented for recognition of images showing 10 hand gestures. Images were available from 24 subjects and captured on two different backgrounds and with several sp... 详细信息
来源: 评论
Predictive maintenance based on anomaly detection using deep learning for air production unit in the railway industry  8
Predictive maintenance based on anomaly detection using deep...
收藏 引用
8th IEEE International Conference on Data Science and Advanced Analytics (DSAA)
作者: Davari, Narjes Veloso, Bruno Ribeiro, Rita P. Pereira, Pedro Mota Gama, Joao LIAAD INESC TEC Porto Portugal Univ Portucalense LIAAD INESC TEC Porto Portugal Univ Porto LIAAD INESC TEC Porto Portugal
Predictive maintenance methods assist early detection of failures and errors in machinery before they reach critical stages. This study proposes a data-driven predictive maintenance framework for the air production un... 详细信息
来源: 评论
A Novel Deep Model for Image Recognition  5
A Novel Deep Model for Image Recognition
收藏 引用
5th IEEE International Conference on Software Engineering and Service Science (ICSESS)
作者: Zhu, Ming Wu, Yan Tongji Univ Coll Elect & Informat Engn Shanghai 200092 Peoples R China
In this paper we propose a hybrid deep network for image recognition. First we use the sparse autoencoder(SAE) which is a method to extract high-level feature representations of data in an unsupervised way, without an... 详细信息
来源: 评论
An extreme rainfall-induced landslide susceptibility assessment using autoencoder combined with random forest in Shimane Prefecture, Japan
收藏 引用
GEOENVIRONMENTAL DISASTERS 2020年 第1期7卷 1-16页
作者: Nam, Kounghoon Wang, Fawu Shimane Univ Dept Earth Sci 1060 Nishikawatsu Cho Matsue Shimane 6908504 Japan
BackgroundLandslide-affecting factors are uncorrelated or non-linearly correlated, limiting the predictive performance of traditional machine learning methods for landslide susceptibility assessment. Deep learning met... 详细信息
来源: 评论
Deep Learning-Based Classification of Massive Electrocardiography Data
Deep Learning-Based Classification of Massive Electrocardiog...
收藏 引用
2016 IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC 2016)
作者: Lin Zhou Yan Yan Xingbin Qin Chan Yuan Dashun Que Lei Wang Information and Communication Engineering WuHan University of Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences
Classification is the basis of electrocardiography(ECG) *** the last decades,a large number of methods were proposed to deal with the classification of ECG *** this paper a kind of deep learning method is introduced i... 详细信息
来源: 评论
Machine Learning Anomaly Detection in Large Systems  52
Machine Learning Anomaly Detection in Large Systems
收藏 引用
IEEE AUTOTESTCON
作者: Murphree, Jerry DRS Technol Huntsville AL 35808 USA
We have a need for methods to efficiently determine the health of a system. Diagnostics and prognostics determine system heath through analysis of data from sensors. Anomalies in the data can help us determine if ther... 详细信息
来源: 评论
Abnormal Event Detection using Recurrent Neural Network
Abnormal Event Detection using Recurrent Neural Network
收藏 引用
2nd International Conference on Computer Science and Applications (CSA)
作者: Zhou, Xu-gang Zhang, Li-qing Shanghai Jiao Tong Univ Dept Comp Sci Shanghai Peoples R China
In this paper, we introduce a simple but novel model to detect abnormal event in surveillance video using sparse autoencoder and recurrent neuron network. In this model, we first train a sparse autoencoder to extract ... 详细信息
来源: 评论
Hybrid evolutionary approach for Devanagari handwritten numeral recognition using Convolutional Neural Network  6
Hybrid evolutionary approach for Devanagari handwritten nume...
收藏 引用
6th International Conference on Smart Computing and Communications (ICSCC)
作者: Trivedi, Adarsh Srivastava, Siddhant Mishra, Apoorva Shukla, Anupam Tiwari, Ritu ABV Indian Inst Informat Technol Soft Comp & Expert Syst Lab Gwalior 474015 India
In recent years, deep learning has been extensively used in both supervised and unsupervised learning problems. Among the deep learning models, CNN has outperformed all others for object recognition task. Although CNN... 详细信息
来源: 评论
PAN-SHARPENING BASED ON MULTILEVEL COUPLED DEEP NETWORK  38
PAN-SHARPENING BASED ON MULTILEVEL COUPLED DEEP NETWORK
收藏 引用
38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Cai, Wanting Xu, Yang Wu, Zebin Liu, Hongyi Qian, Ling Wei, Zhihui Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China Nanjing Robot Res Inst Co Ltd Nanjing 211135 Jiangsu Peoples R China Lianyungang E Port Informat Dev Co Ltd Lianyungang 222042 Peoples R China Nanjing Univ Sci & Technol Sch Sci Nanjing 210094 Jiangsu Peoples R China Nanjing Univ Sci & Technol Sch Elect & Opt Engn Nanjing 210094 Jiangsu Peoples R China
Pan-sharpening is a common image-fusion method. To improve the quality of fused images, a multilevel deep learning Pan-sharpening method is proposed in this paper. In the training phase, we introduce Coupled sparse De... 详细信息
来源: 评论
HYPERSPECTRAL UNMIXING VIA WAVELET BASED autoencoder NETWORK  10
HYPERSPECTRAL UNMIXING VIA WAVELET BASED AUTOENCODER NETWORK
收藏 引用
10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)
作者: Yan, Bin Wu, Zebin Liu, Hongyi Xu, Yang Wei, Zhihui Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China
Hyperspectral unmixing is a hot topic in the field of remote sensing. Due to the limitation of spatial resolution and diversity of object distribution, hyperspectral image contains mixed pixels, which brings a great c... 详细信息
来源: 评论