咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=Sparse AutoEncoder"
251 条 记 录,以下是61-70 订阅
排序:
Face recognition based on deep aggregated sparse autoencoder network  37
Face recognition based on deep aggregated sparse autoencoder...
收藏 引用
37th Chinese Control Conference (CCC)
作者: Zou, Guofeng Lin, Dingyi Fu, Gui-xia Shen, Jin Gao, Mingliang Shandong Univ Technol Coll Elect & Elect Engn Zibo 255049 Peoples R China
sparse autoencoder network is sensitive to face noise, and the learning process is easy to ignore the face structure information. Address this problem, we propose a face recognition approach fused sub-region LBP featu... 详细信息
来源: 评论
STACKED sparse autoencoder (SSAE) BASED FRAMEWORK FOR NUCLEI PATCH CLASSIFICATION ON BREAST CANCER HISTOPATHOLOGY  11
STACKED SPARSE AUTOENCODER (SSAE) BASED FRAMEWORK FOR NUCLEI...
收藏 引用
11th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Xu, Jun Xiang, Lei Hang, Renlong Wu, Jianzhong Nanjing Univ Informat Sci & Technol Nanjing 210044 Jiangsu Peoples R China Jiangsu Canc Hosp Nanjing 210000 Jiangsu Peoples R China
In this paper, a Stacked sparse autoencoder (SSAE) based framework is presented for nuclei classification on breast cancer histopathology. SSAE works very well in learning useful high-level feature for better represen... 详细信息
来源: 评论
Attention-augmented X-vectors for the Evaluation of Mimicked Speech Using sparse autoencoder-LSTM framework  25
Attention-augmented X-vectors for the Evaluation of Mimicked...
收藏 引用
25th Interspeech Conference
作者: Bhasi, K. C. Rajan, Rajeev Noumida, A. Govt Engn Coll Barton Hill Thiruvananthapuram Kerala India Coll Engn Trivandrum Trivandrum Kerala India APJ Abdul Kalam Technol Univ Thiruvananthapuram Kerala India
This paper evaluates the quality of mimicked speech by computing the speaker embeddings. We propose an attention-augmented encoded speaker embedding for mimicking speaker evaluation. X-vector embeddings extracted from... 详细信息
来源: 评论
Reconstruct Fingerprint Images Using Deep Learning and sparse autoencoder Algorithms
Reconstruct Fingerprint Images Using Deep Learning and Spars...
收藏 引用
Conference on Real-Time Image Processing and Deep Learning
作者: Saponara, Sergio Elhanashi, Abdussalam Gagliardi, Alessio Univ Pisa Dip Ingn Informaz Via G Caruso 16 I-56122 Pisa Italy
Fingerprinting is one form of biometrics, a science that can be used for personal identification. It is one of the important techniques and security measures for human authentication across the globe due to its unique... 详细信息
来源: 评论
Fault Diagnosis Based on Batch-normalized Stacked sparse autoencoder  39
Fault Diagnosis Based on Batch-normalized Stacked Sparse Aut...
收藏 引用
39th Chinese Control Conference (CCC)
作者: Liu Xiaozhi Gao Yang Yang Yinghua Northeastern Univ Coll Informat Sci & Engn Shenyang 110819 Peoples R China
A fault diagnosis method based on batch-normalization stacked sparse autoencoder (SSAE) is presented in this paper. This paper use the autoencoder to extract features for fault diagnosis on account of its good perform... 详细信息
来源: 评论
Incident early warning based on sparse autoencoder and decision fusion for drilling process  47
Incident early warning based on sparse autoencoder and decis...
收藏 引用
47th Annual Conference of the IEEE-Industrial-Electronics-Society (IECON)
作者: Zhang, Zheng Lai, Xuzhi Wu, Min Du, Sheng China Univ Geosci Sch Automat Wuhan 430074 Peoples R China Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China Minist Educ Engn Res Ctr Intelligent Technol Geoexplorat Wuhan 430074 Peoples R China
Complicated geological environments lead to a high risk of drilling incidents. Incident early warning for drilling process is in demand for industry field. An incident early warning method for loss and kick based on s... 详细信息
来源: 评论
Power Quality Disturbances Classification Using sparse autoencoder (SAE) Based on Deep Neural Network  11
Power Quality Disturbances Classification Using Sparse Autoe...
收藏 引用
11th IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE)
作者: Manan, Nurul Asiah Shahbudin, Shahrani Kassim, Murizah Mohamad, Roslina Rahman, Farah Yasmin Abdul Univ Teknol MARA Fac Elect Engn Shah Alam 40450 Selangor Malaysia
Power quality is main concern for the electrical energy consumptions and electrical equipment. Hence, the power quality disturbances needed to monitor, improve and control. However, most of the research are focusing t... 详细信息
来源: 评论
A sparse autoencoder Based Denosing the Spectrum Signal in LIBS  30
A Sparse Autoencoder Based Denosing the Spectrum Signal in L...
收藏 引用
30th Chinese Control and Decision Conference (CCDC)
作者: Ye, Shibing Niu, Zhixing Yang, Peng Sun, Junqing Tianjin Univ Technol Tianjin Key Lab Intelligence Comp & Novel Softwar Tianjin 300384 Peoples R China
Based on laser induced breakdown spectroscopy (LIBS) technique, the content of the main elements in the liquid steel of carbon steel alloy can he detected in real time during melting process. In order to detect the li... 详细信息
来源: 评论
Robust Transfer Learning in Multi-Robot Systems by Using sparse autoencoder  19
Robust Transfer Learning in Multi-Robot Systems by Using Spa...
收藏 引用
19th IEEE International Conference on Soft Computing and Measurements (SCM)
作者: Utkin, Lev V. Popov, Sergey G. Zhuk, Y. A. Peter Great St Petersburg Polytech Univ Telemat Dept St Petersburg Russia ITMO Univ Dept Comp Educ Technol St Petersburg Russia
Robust algorithms for transfer learning in multi-robot systems based on elements of the deep learning are proposed in the paper. The algorithms are based on using the sparse autoencoder. The main ideas underlying the ... 详细信息
来源: 评论
A Deep Learning Method Combined sparse autoencoder with SVM  7
A Deep Learning Method Combined Sparse Autoencoder with SVM
收藏 引用
6th International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)
作者: Ju, Yao Guo, Jun Liu, Shuchun East China Normal Univ Comp Ctr Dept Shanghai Peoples R China
In this paper, a novel unsupervised method for learning sparse features combined with support vector machines for classification is proposed. The classical SVM method has restrictions on the large-scale applications. ... 详细信息
来源: 评论