咨询与建议

限定检索结果

文献类型

  • 157 篇 期刊文献
  • 92 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 234 篇 工学
    • 123 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 40 篇 控制科学与工程
    • 32 篇 信息与通信工程
    • 24 篇 机械工程
    • 18 篇 软件工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 仪器科学与技术
    • 12 篇 石油与天然气工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 8 篇 测绘科学与技术
    • 5 篇 土木工程
    • 4 篇 化学工程与技术
    • 2 篇 建筑学
    • 2 篇 纺织科学与工程
    • 2 篇 农业工程
  • 47 篇 理学
    • 19 篇 生物学
    • 11 篇 物理学
    • 9 篇 化学
    • 8 篇 地球物理学
    • 4 篇 数学
    • 3 篇 地理学
    • 3 篇 系统科学
    • 2 篇 统计学(可授理学、...
  • 30 篇 医学
    • 13 篇 基础医学(可授医学...
    • 13 篇 临床医学
    • 3 篇 医学技术(可授医学...
  • 23 篇 管理学
    • 21 篇 管理科学与工程(可...
  • 8 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 251 篇 sparse autoencod...
  • 62 篇 deep learning
  • 24 篇 fault diagnosis
  • 17 篇 feature extracti...
  • 16 篇 deep neural netw...
  • 11 篇 machine learning
  • 8 篇 dimensionality r...
  • 7 篇 support vector m...
  • 7 篇 deep belief netw...
  • 7 篇 convolutional ne...
  • 6 篇 image classifica...
  • 6 篇 feature selectio...
  • 6 篇 unsupervised lea...
  • 5 篇 compressed sensi...
  • 5 篇 anomaly detectio...
  • 5 篇 face recognition
  • 5 篇 autoencoder
  • 5 篇 unsupervised fea...
  • 5 篇 convolutional au...
  • 5 篇 convolutional ne...

机构

  • 6 篇 xian univ techno...
  • 6 篇 tianshui normal ...
  • 3 篇 nanyang technol ...
  • 2 篇 nanjing normal u...
  • 2 篇 zhongnan univ ec...
  • 2 篇 northeast petr u...
  • 2 篇 chinese acad sci...
  • 2 篇 hong kong univ s...
  • 2 篇 northeastern uni...
  • 2 篇 china univ petr ...
  • 2 篇 northwestern pol...
  • 2 篇 hebei univ affil...
  • 2 篇 kasetsart univ g...
  • 2 篇 ming chuan univ ...
  • 2 篇 hubei key lab ad...
  • 2 篇 shenzhen institu...
  • 2 篇 china univ geosc...
  • 2 篇 zhengzhou univ l...
  • 2 篇 natl cent univ d...
  • 2 篇 natl inst techno...

作者

  • 7 篇 xie guo
  • 7 篇 yang jing
  • 7 篇 yang yanxi
  • 3 篇 hu jun
  • 3 篇 nair madhu s.
  • 3 篇 zhang yu-dong
  • 3 篇 wang tianzhen
  • 3 篇 xin bin
  • 3 篇 wang shui-hua
  • 2 篇 zhu zhongkui
  • 2 篇 chen kunjin
  • 2 篇 li xin
  • 2 篇 wu min
  • 2 篇 shen changqing
  • 2 篇 kim ji-seon
  • 2 篇 liu ming
  • 2 篇 liu hongyi
  • 2 篇 lin feng
  • 2 篇 hou xiao-xia
  • 2 篇 hou zengguang

语言

  • 241 篇 英文
  • 5 篇 中文
  • 4 篇 其他
  • 1 篇 法文
检索条件"主题词=Sparse Autoencoder"
251 条 记 录,以下是1-10 订阅
排序:
sparse autoencoder-based Multi-head Deep Neural Networks for Machinery Fault Diagnostics with Detection of Novelties
收藏 引用
Chinese Journal of Mechanical Engineering 2021年 第3期34卷 146-157页
作者: Zhe Yang Dejan Gjorgjevikj Jianyu Long Yanyang Zi Shaohui Zhang Chuan Li School of Mechanical Engineering Dongguan University of TechnologyDongguan 523808China School of Mechanical Engineering Xi’an Jiaotong UniversityXi’an 710049China Faculty of Computer Science and Engineering Ss.Cyril and Methodius UniversitySkopjeMacedonia
Supervised fault diagnosis typically assumes that all the types of machinery failures are ***,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging *** this paper,a novel fault ... 详细信息
来源: 评论
sparse autoencoder for social image understanding
收藏 引用
NEUROCOMPUTING 2019年 369卷 122-133页
作者: Liu, Jianran Wang, Shiping Yang, Wenyuan Minnan Normal Univ Fujian Key Lab Granular Comp & Applicat Zhangzhou 363000 Peoples R China Fuzhou Univ Fujian Prov Key Lab Network Comp & Intelligent In Fuzhou 350000 Fujian Peoples R China
The rapid increase of social media images has made organizing these resources effectively a huge problem. Labeling unlabeled images becomes the crucial division of social image understanding. However, the enhancement ... 详细信息
来源: 评论
sparse autoencoder with Attention Mechanism for Speech Emotion Recognition  1
Sparse Autoencoder with Attention Mechanism for Speech Emoti...
收藏 引用
1st IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)
作者: Sun, Ting-Wei Wu, An-Yeu (Andy) Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan
There has been a lot of previous works on speech emotion with machine learning method. However, most of them rely on the effectiveness of labelled speech data. In this paper, we propose a novel algorithm which combine... 详细信息
来源: 评论
sparse autoencoder based deep neural network for voxelwise detection of cerebral microbleed  22
Sparse Autoencoder based deep neural network for voxelwise d...
收藏 引用
22nd IEEE International Conference on Parallel and Distributed Systems (ICPADS)
作者: Zhang, Yu-Dong Hou, Xiao-Xia Lv, Yi-Ding Chen, Hong Zhang, Yin Wang, Shui-Hua Nanjing Normal Univ Sch Comp Sci & Technol Nanjing 210023 Jiangsu Peoples R China Hunan Prov Key Lab Network Invest Technol Changsha 410138 Hunan Peoples R China Nanjing Med Univ Affiliated Hosp 1 Dept Neurol Nanjing 210029 Jiangsu Peoples R China Nanjing Med Univ Dept Psychiat Nanjing 210029 Jiangsu Peoples R China Zhongnan Univ Econ & Law Sch Informat & Safety Engn Wuhan 430073 Hubei Peoples R China CUNY City Coll New York Dept Elect Engn New York NY 10031 USA
In order to detect cerebral microbleed more efficiently, we developed a novel computer-aided detection method based on susceptibility-weighted imaging. We enrolled five CADASIL patients and five healthy controls. We u... 详细信息
来源: 评论
sparse autoencoder BASED HYPERSPECTRAL ANOMALY DETECTION WITH THE SINGULAR SPECTRUM ANALYSIS BASED SPECTRAL DENOISING
SPARSE AUTOENCODER BASED HYPERSPECTRAL ANOMALY DETECTION WIT...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Li, Yinhe Ren, Jinchang Gao, Zhi Sun, Genyun Robert Gordon Univ Natl Subsea Ctr Aberdeen Scotland Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan Peoples R China China Univ Petr East China Coll Oceanog & Space Informat Qingdao Peoples R China
As an effective tool for monitoring surface irregularities in remote sensing, hyperspectral anomaly detection (HAD) has garnered increasing attention. However, how to improve the detection accuracy remains a formidabl... 详细信息
来源: 评论
sparse autoencoder-based Feature Transfer Learning for Speech Emotion Recognition
Sparse Autoencoder-based Feature Transfer Learning for Speec...
收藏 引用
5th Biannual Conference of the Humaine-Association on Affective Computing and Intelligent Interaction (ACII)
作者: Deng, Jun Zhang, Zixing Marchi, Erik Schuller, Bjoern Tech Univ Munich MMK Machine Intelligence & Signal Proc Grp D-80290 Munich Germany
In speech emotion recognition, training and test data used for system development usually tend to fit each other perfectly, but further 'similar' data may be available. Transfer learning helps to exploit such ... 详细信息
来源: 评论
sparse autoencoder Based Feature Learning for Unmanned Aerial Vehicle Landforms Image Classification  8
Sparse Autoencoder Based Feature Learning for Unmanned Aeria...
收藏 引用
IEEE International Conference on Cybernetics and Intelligent Systems (CIS) / IEEE Conference on Robotics, Automation and Mechatronics (RAM)
作者: Liu, Fang Lu, Lixia Huang, Guangwei Beijing Univ Technol Coll Informat & Commun Engn Beijing 100124 Peoples R China
A new algorithm of unmanned aerial vehicle landforms image classification based on sparse autoencoder(SAE) is proposed in view of the drawbacks of single layer sparse autoencoder for feature learning that it is easy t... 详细信息
来源: 评论
sparse autoencoder for sparse Code Multiple Access  3
Sparse Autoencoder for Sparse Code Multiple Access
收藏 引用
3rd International Conference on Artificial Intelligence in Information and Communication (IEEE ICAIIC)
作者: Singh, Medini Mishra, Deepak Vanidevi, M. Indian Inst Space Sci & Technol Dept Avionics Thiruvananthapuram Kerala India
In the forthcoming 5G technology, sparse Code Multiple Access (SCMA) is the most promising scheme that aims at improving spectral efficiency further and providing massive connectivity. The challenge behind implementin... 详细信息
来源: 评论
sparse autoencoder for Facial Expression Recognition  12
Sparse Autoencoder for Facial Expression Recognition
收藏 引用
12th IEEE Int Conf Ubiquitous Intelligence & Comp/12th IEEE Int Conf Autonom & Trusted Comp/15th IEEE Int Conf Scalable Comp & Commun & Associated Workshops/IEEE Int Conf Cloud & Big Data Comp/IEEE Int Conf Internet People
作者: Huang, Binbin Ying, Zilu Wuyi Univ Sch Informat Engn Jiangmen Peoples R China
Facial expression recognition has become one of the most interesting topics in human computer interaction. A lot of methods have been proposed and studied for facial expression recognition. Among some of these methods... 详细信息
来源: 评论
A Framework for Automatically Extracting Overvoltage Features Based on sparse autoencoder
收藏 引用
IEEE TRANSACTIONS ON SMART GRID 2018年 第2期9卷 594-604页
作者: Chen, Kunjin Hu, Jun He, Jinliang Tsinghua Univ Dept Elect Engn State Key Lab Power Syst Beijing 100084 Peoples R China
With the development of smart grid, it is of increasing significance to identify and cope with various types of overvoltages, faults and power quality disturbances effectively and automatically. In this paper, a frame... 详细信息
来源: 评论