咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 92 篇 会议
  • 9 篇 学位论文

馆藏范围

  • 389 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 339 篇 工学
    • 256 篇 计算机科学与技术...
    • 145 篇 电气工程
    • 33 篇 控制科学与工程
    • 31 篇 软件工程
    • 29 篇 信息与通信工程
    • 15 篇 仪器科学与技术
    • 14 篇 生物医学工程(可授...
    • 10 篇 电子科学与技术(可...
    • 10 篇 测绘科学与技术
    • 9 篇 机械工程
    • 4 篇 化学工程与技术
    • 4 篇 环境科学与工程(可...
    • 3 篇 材料科学与工程(可...
    • 3 篇 石油与天然气工程
    • 3 篇 生物工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 动力工程及工程热...
  • 73 篇 理学
    • 22 篇 数学
    • 18 篇 物理学
    • 18 篇 生物学
    • 14 篇 统计学(可授理学、...
    • 9 篇 地球物理学
    • 6 篇 化学
    • 3 篇 系统科学
  • 45 篇 医学
    • 32 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 14 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 32 篇 管理学
    • 31 篇 管理科学与工程(可...
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 农学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 389 篇 sparse learning
  • 44 篇 feature selectio...
  • 22 篇 feature extracti...
  • 17 篇 classification
  • 14 篇 unsupervised fea...
  • 12 篇 optimization
  • 12 篇 multi-task learn...
  • 11 篇 deep learning
  • 11 篇 machine learning
  • 11 篇 lasso
  • 8 篇 regression
  • 8 篇 sparse matrices
  • 8 篇 data models
  • 7 篇 alzheimer's dise...
  • 7 篇 variable selecti...
  • 6 篇 clustering
  • 6 篇 compressed sensi...
  • 6 篇 task analysis
  • 6 篇 dimensionality r...
  • 6 篇 admm

机构

  • 7 篇 northwestern pol...
  • 7 篇 china agr univ c...
  • 7 篇 southwest jiaoto...
  • 6 篇 southwest jiaoto...
  • 5 篇 univ chinese aca...
  • 5 篇 chinese acad sci...
  • 5 篇 china agr univ c...
  • 4 篇 sichuan univ col...
  • 4 篇 asia univ dept c...
  • 4 篇 guangxi normal u...
  • 4 篇 xi an jiao tong ...
  • 4 篇 ludong univ sch ...
  • 4 篇 northwestern pol...
  • 4 篇 nanjing univ fin...
  • 4 篇 jilin univ key l...
  • 4 篇 guangxi normal u...
  • 4 篇 rutgers state un...
  • 4 篇 univ texas arlin...
  • 4 篇 minist educ engn...
  • 4 篇 southwest jiaoto...

作者

  • 14 篇 ye jieping
  • 11 篇 zhang shichao
  • 10 篇 li xuelong
  • 9 篇 zhu xiaofeng
  • 7 篇 chen hongmei
  • 7 篇 li tianrui
  • 5 篇 nie feiping
  • 5 篇 liu huawen
  • 5 篇 liu sicong
  • 5 篇 cao peng
  • 5 篇 xu yitian
  • 5 篇 zhang zhiwang
  • 5 篇 liu xiaoli
  • 5 篇 he jing
  • 5 篇 kim deok-hwan
  • 4 篇 wang hongmei
  • 4 篇 zheng wei
  • 4 篇 horng shi-jinn
  • 4 篇 zhu yonghua
  • 4 篇 huang heng

语言

  • 381 篇 英文
  • 6 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
检索条件"主题词=Sparse Learning"
389 条 记 录,以下是1-10 订阅
排序:
Optimal Placement of Programmable Tooling Machines Considering Hierarchical Structure via sparse learning for Multistage Assembly Processes
收藏 引用
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2025年 22卷 9970-9982页
作者: Tao, Chengyu Du, Juan Liu, Jian Hong Kong Univ Sci & Technol Acad Interdisciplinary Studies Hong Kong 999077 Peoples R China Hong Kong Univ Sci & Technol Guangzhou Smart Mfg Thrust & Data Sci & Analyt Thrust Guangzhou 511453 Peoples R China Guangzhou HKUST Fok Ying Tung Res Inst Guangzhou 511453 Peoples R China Univ Arizona Dept Syst & Ind Engn Tucson AZ 85721 USA
End-of-line product dimensional quality assurance is crucial in multistage assembly processes (MAPs). Active control strategies involve the deployment of controllable, programmable tooling machines (PTs) to adjust par... 详细信息
来源: 评论
PointSGRADE: sparse learning with graph representation for anomaly detection by using unstructured 3D point cloud data
收藏 引用
IISE TRANSACTIONS 2025年 第2期57卷 131-144页
作者: Tao, Chengyu Du, Juan Hong Kong Univ Sci & Technol Guangzhou Smart Mfg Thrust Guangzhou Peoples R China Hong Kong Univ Sci & Technol Dept Mech & Aerosp Engn Hong Kong Peoples R China Hong Kong Univ Sci & Technol Acad Interdisciplinary Studies Hong Kong Peoples R China Guangzhou HKUST Fok Ying Tung Res Inst Guangzhou Peoples R China
Surface anomaly detection by using 3D point cloud data has recently received significant attention. To completely measure the common free-form surfaces without loss of details, advanced 3D scanning technologies, such ... 详细信息
来源: 评论
Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters
收藏 引用
NEUROCOMPUTING 2025年 635卷
作者: Fei, Luhuan Wang, Xinyi Wang, Jiankun Sun, Lu Zhang, Yuyao ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China Michigan State Univ Coll Engn Dept Comp Sci & Engn E Lansing MI USA
Traditional learning usually assumes that all samples share the same global model, which fails to preserve critical local information for heterogeneous data. It can be tackled by detecting sample clusters and learning... 详细信息
来源: 评论
Feature selection through adaptive sparse learning for scene recognition
收藏 引用
APPLIED SOFT COMPUTING 2025年 169卷
作者: Sun, Yunyun Li, Peng Sun, Hang Xu, He Wang, Ruchuan Nanjing Univ Posts & Telecommun Sch Internet Things Nanjing 210023 Jiangsu Peoples R China Nanjing Univ Posts & Telecommun Sch Comp Sci Nanjing 210023 Jiangsu Peoples R China Jiangsu High Technol Res Key Lab Wireless Sensor N Nanjing 210023 Jiangsu Peoples R China
Scene recognition is an important and challenging task in the field of computer vision. Current research typically focuses on local features in scene images by utilizing pretrained convolutional neural networks (CNN) ... 详细信息
来源: 评论
sparse Homogeneous learning: A New Approach for sparse learning
收藏 引用
CHINESE JOURNAL OF ELECTRONICS 2025年 第2期34卷 712-721页
作者: Shi, Jiajie Yang, Zhi Liu, Jiafeng Shi, Hongli Capital Med Univ Coll Biomed Engn Beijing 100069 Peoples R China Capital Med Univ Beijing Key Lab Fundamental Res Biomech Clin Appli Beijing 100069 Peoples R China Beijing Informat Sci & Technol Univ Sch Instrumentat Sci & Optoelect Engn Beijing 100192 Peoples R China
Many sparse representation problems boil down to address the underdetermined systems of linear equations subject to solution sparsity restriction. Many approaches have been proposed such as sparse Bayesian learning. I... 详细信息
来源: 评论
A context constraint and sparse learning based on correlation filter for high-confidence coarse-to-fine visual tracking
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Su, Yinqiang Xu, Fang Wang, Zhongshi Sun, Mingchao Zhao, Hui Chinese Acad Sci Xian Inst Opt & Precis Mech Xian 710119 Peoples R China Chinese Acad Sci Changchun Inst Opt Fine Mech & Phys State Key Lab Dynam Opt Imaging & Measurement Changchun 130033 Peoples R China
Discriminative Correlation Filters (DCFs) have recently garnered significant considerable in the field of visual single tracking. However, existing trackers frequently struggle to fully mine the structural complementa... 详细信息
来源: 评论
sparse learning of Higher-Order Statistics for Communications and Sensing
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2020年 第1期4卷 13-22页
作者: Sun, Zhuo Kong, Song Wang, Wenbo Beijing Univ Posts & Telecommun Key Lab Universal Wireless Commun Beijing 100876 Peoples R China China Acad Informat & Commun Technol Beijing 100191 Peoples R China
Signal processing based higher-order statistics (HOS) has been acting as a potential important tool on variety of target identification and information sensing fields. While a concise or compact expression of HOS is n... 详细信息
来源: 评论
sparse learning-Based Correlation Filter for Robust Tracking
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2021年 30卷 878-891页
作者: Zhang, Wenhua Jiao, Licheng Li, Yuxuan Liu, Jia Xidian Univ Int Res Ctr Intelligent Percept & Computat Key Lab Intelligent Percept & Image Understanding Minist Educ Xian 710071 Peoples R China Xidian Univ Joint Int Res Lab Intelligent Percept & Computat Sch Artificial Intelligence Xian 710071 Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China
Many objective tracking methods are based on the framework of correlation filtering (CF) due to its high efficiency. In this paper, we propose a l(2)-norm based sparse response regularization term to restrain unexpect... 详细信息
来源: 评论
sparse learning Method With Feature Selection for Sensor Placement and Response Prediction
收藏 引用
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 2024年 第6期60卷 8022-8033页
作者: Zhang, Minzhao Ding, Junliang Li, Bin Northwestern Polytech Univ Sch Aeronaut Xian 710072 Peoples R China Chinese Flight Test Estab Xian 710089 Peoples R China
Monitoring the vibration responses of structures accurately and efficiently is the key point of structural health monitoring (SHM). The monitoring of structural vibration responses depends on the sensor system. Theref... 详细信息
来源: 评论
sparse learning model with embedded RIP conditions for turbulence super-resolution reconstruction
收藏 引用
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2024年 425卷
作者: Huang, Qinyi Zhu, Wei Ma, Feng Liu, Qiang Wen, Jun Chen, Lei Beijing Inst Technol Beijing 100081 Peoples R China
In practical engineering scenarios, constraints arising from sensor placement, quantity, and the limitations of current testing technologies often lead to turbulence data characterized by low resolution and irregular ... 详细信息
来源: 评论