咨询与建议

限定检索结果

文献类型

  • 40 篇 会议
  • 24 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 65 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 54 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 8 篇 软件工程
    • 5 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
  • 7 篇 理学
    • 3 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 65 篇 sparse matrix mu...
  • 8 篇 gpu
  • 6 篇 sparse matrices
  • 6 篇 spgemm
  • 4 篇 accelerator
  • 4 篇 hardware acceler...
  • 4 篇 fpga
  • 3 篇 systolic arrays
  • 3 篇 vectors
  • 3 篇 extended rooflin...
  • 3 篇 parallel computi...
  • 3 篇 matrix tiling
  • 3 篇 block eigensolve...
  • 3 篇 convolutional ne...
  • 3 篇 gpus
  • 2 篇 graph neural net...
  • 2 篇 sparse formats
  • 2 篇 deep learning
  • 2 篇 hardware acceler...
  • 2 篇 indexes

机构

  • 3 篇 univ chinese aca...
  • 3 篇 natl univ def te...
  • 2 篇 indian inst info...
  • 2 篇 cochin univ sci ...
  • 2 篇 univ calif davis...
  • 2 篇 hanyang univ dep...
  • 2 篇 chinese acad sci...
  • 2 篇 swiss fed inst t...
  • 2 篇 xiangtan univ sc...
  • 2 篇 lawrence berkele...
  • 1 篇 hkust peoples r ...
  • 1 篇 taiwan semicond ...
  • 1 篇 cochin univ sci ...
  • 1 篇 natl tsing hua u...
  • 1 篇 duke univ durham...
  • 1 篇 univ politecn ma...
  • 1 篇 fed inst sci & t...
  • 1 篇 institute of com...
  • 1 篇 peking univ sch ...
  • 1 篇 hubei engn univ ...

作者

  • 4 篇 buluc aydin
  • 3 篇 noble g.
  • 3 篇 kala s.
  • 3 篇 owens john d.
  • 3 篇 nalesh s.
  • 3 篇 yang carl
  • 2 篇 li zerun
  • 2 篇 niu dimin
  • 2 篇 xie yuan
  • 2 篇 yang chao
  • 2 篇 williams samuel
  • 2 篇 aktulga hasan me...
  • 2 篇 liu rui
  • 2 篇 park yongjun
  • 2 篇 kim sang-wook
  • 2 篇 zheng hongzhong
  • 2 篇 zhang xiaoyu
  • 2 篇 lee kyungyong
  • 2 篇 han yinhe
  • 2 篇 chen xiaoming

语言

  • 65 篇 英文
检索条件"主题词=Sparse Matrix Multiplication"
65 条 记 录,以下是1-10 订阅
排序:
SpecBoost: Accelerating Tiled sparse matrix multiplication via Dataflow Speculation
收藏 引用
IEEE ACCESS 2025年 13卷 45568-45576页
作者: Seo, Gwanghwi Ryu, Sungju Sogang Univ Dept Elect Engn Seoul 100611 South Korea Sogang Univ Dept Syst Semicond Engn Seoul 04107 South Korea
sparse matrix-sparse matrix multiplication (SpMSpM) is crucial in many fields such asscientific computing, sparse linear algebra, and machine learning due to its computational complexity inthe large and extremely spar... 详细信息
来源: 评论
GAS: General-Purpose In-Memory-Computing Accelerator for sparse matrix multiplication
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2024年 第6期73卷 1427-1441页
作者: Zhang, Xiaoyu Li, Zerun Liu, Rui Chen, Xiaoming Han, Yinhe Chinese Acad Sci Inst Comp Technol Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100190 Peoples R China Xiangtan Univ Sch Mat Sci & Engn Xiangtan 411105 Hunan Peoples R China
sparse matrix multiplication is widely used in various practical applications. Different accelerators have been proposed to speed up sparse matrix-dense vector multiplication (SpMV), sparse matrix-sparse vector multip... 详细信息
来源: 评论
A Context-Awareness and Hardware-Friendly sparse matrix multiplication Kernel for CNN Inference Acceleration
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2025年 第4期74卷 1182-1195页
作者: Wang, Haotian Ding, Yan Liu, Yumeng Liu, Weichen Liu, Chubo Yang, Wangdong Li, Kenli Hunan Univ Coll Informat Sci & Engn Changsha 410082 Peoples R China Natl Supercomp Ctr Changsha Changsha 410082 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Peoples R China Xiangjiang Lab Changsha 410205 Peoples R China Chinese Acad Sci Inst Software Beijing 100190 Peoples R China Nanyang Technol Univ Coll Comp Sci & Engn Singapore 639798 Singapore
Sparsification technology is crucial for deploying convolutional neural networks in resource-constrained environments. However, the efficiency of sparse models is hampered by irregular memory access patterns in sparse... 详细信息
来源: 评论
FPGA-Based sparse matrix multiplication Accelerators: From State-of-the-Art to Future Opportunities
收藏 引用
ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS 2024年 第4期17卷 1-37页
作者: Liu, Yajing Chen, Ruiqi Li, Shuyang Yang, Jing Li, Shun DA Silva, Bruno Fuzhou Univ Fuzhou Peoples R China Vrije Univ Brussel Brussels Belgium Fudan Univ Shanghai Peoples R China VeriMake Innovat Lab Nanjing Peoples R China
sparse matrix multiplication (SpMM) plays a critical role in high-performance computing applications, such as deep learning, image processing, and physical simulation. Field-Programmable Gate Arrays (FPGAs), with thei... 详细信息
来源: 评论
S-MPEC: sparse matrix multiplication Performance Estimator on a Cloud Environment
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2023年 第5期26卷 2563-2576页
作者: Park, Jueon Lee, Kyungyong Kookmin Univ Dept Comp Sci Seoul South Korea
sparse matrix multiplication (SPMM) is widely used for various machine learning algorithms. As the applications of SPMM using large-scale datasets become prevalent, executing SPMM jobs on an optimized setup has become... 详细信息
来源: 评论
Sparm: A sparse matrix multiplication Accelerator Supporting Multiple Dataflows  35
Sparm: A Sparse Matrix Multiplication Accelerator Supporting...
收藏 引用
35th IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP)
作者: Luo, Shengbai Wang, Bo Shi, Yihao Zhang, Xueyi Xue, Qingshan Ma, Sheng Natl Univ Def Technol Changsha Peoples R China
As the main workload of many scientific and machine learning applications, sparse matrix-matrix multiplication (spGEMM) has become a hot research field. The current spGEMM workloads exhibit sparsity and irregularity, ... 详细信息
来源: 评论
Row-Wise Product-Based sparse matrix multiplication Hardware Accelerator With Optimal Load Balancing
收藏 引用
IEEE ACCESS 2022年 10卷 64547-64559页
作者: Lee, Jong Hun Park, Beomjin Kong, Joonho Munir, Arslan LX Semicon Seoul 06763 South Korea Samsung Elect Hwaseong 18448 South Korea Kyungpook Natl Univ Sch Elect & Elect Engn Daegu 41566 South Korea Kyungpook Natl Univ Sch Elect Engn Daegu 41566 South Korea Kansas State Univ Dept Comp Sci Manhattan KS 66506 USA
matrix multiplication is a main computation kernel of emerging workloads, such as deep neural networks and graph analytics. These workloads often exhibit high sparsity in data, which means a large portion of the eleme... 详细信息
来源: 评论
HARP: Hardware-Based Pseudo-Tiling for sparse matrix multiplication Accelerator  23
HARP: Hardware-Based Pseudo-Tiling for Sparse Matrix Multipl...
收藏 引用
56th IEEE/ACM International Symposium on Microarchitecture (MICRO)
作者: Kim, Jinkwon Jang, Myeongjae Nam, Haejin Kim, Soontae Korea Adv Inst Sci & Technol Daejeon South Korea
General sparse matrix-matrix multiplication (SpGEMM) is a memory-bound workload, due to the compression format used. To minimize data movements for input matrices, outer product accelerators have been proposed. Since ... 详细信息
来源: 评论
EMBARK: Memory bounded architectural improvement in CSR-CSC sparse matrix multiplication  9
EMBARK: Memory bounded architectural improvement in CSR-CSC ...
收藏 引用
IEEE 9th International Conference on Collaboration and Internet Computing (CIC)
作者: Jayakody, Shakya Wang, Jun Univ Cent Florida Dept Elect & Comp Engn Orlando FL 32816 USA
sparse matrix multiplication (SpMM) is a crucial algorithm in modern platforms such as Artificial Intelligence (AI), Graph Neural Network (GNN), Graph Convolutional Network (GCN), and neural network image processing. ... 详细信息
来源: 评论
SPADA: Accelerating sparse matrix multiplication with Adaptive Dataflow  2023
SPADA: Accelerating Sparse Matrix Multiplication with Adapti...
收藏 引用
28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)
作者: Li, Zhiyao Li, Jiaxiang Chen, Taijie Niu, Dimin Zheng, Hongzhong Xie, Yuan Gao, Mingyu Tsinghua Univ Beijing Peoples R China Northwestern Univ Evanston IL 60208 USA Alibaba DAMO Acad Hangzhou Peoples R China Shanghai Qi Zhi Inst Shanghai Peoples R China
sparse matrix-matrix multiplication (SpGEMM) is widely used in many scientific and deep learning applications. The highly irregular structures of SpGEMM limit its performance and efficiency on conventional computation... 详细信息
来源: 评论