咨询与建议

限定检索结果

文献类型

  • 15 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 24 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
    • 1 篇 软件工程
  • 1 篇 理学
    • 1 篇 数学

主题

  • 25 篇 sparse matrix ve...
  • 5 篇 spmv
  • 3 篇 conjugate gradie...
  • 3 篇 convolution
  • 2 篇 performance
  • 2 篇 sparse matrices
  • 2 篇 compressed stora...
  • 2 篇 compressed row s...
  • 2 篇 sparse linear al...
  • 2 篇 envelope orderin...
  • 2 篇 smvm
  • 2 篇 symmetric sparse...
  • 2 篇 supernodes
  • 2 篇 sparse matrix
  • 2 篇 fpga
  • 2 篇 gpu
  • 1 篇 cdmac
  • 1 篇 cpu
  • 1 篇 dma
  • 1 篇 customised archi...

机构

  • 2 篇 penn state univ ...
  • 2 篇 bilkent univ dep...
  • 2 篇 chinese acad sci...
  • 2 篇 penn state univ ...
  • 1 篇 penn state univ ...
  • 1 篇 nara womens univ...
  • 1 篇 hunan agr univ d...
  • 1 篇 georgia inst tec...
  • 1 篇 china aerodynam ...
  • 1 篇 king abdulaziz u...
  • 1 篇 univ chinese aca...
  • 1 篇 eth dept comp sc...
  • 1 篇 ras mv keldysh a...
  • 1 篇 tokyo univ agr &...
  • 1 篇 natl tech univ a...
  • 1 篇 univ alabama 301...
  • 1 篇 northwest univ s...
  • 1 篇 microsoft res re...
  • 1 篇 cornell univ dep...
  • 1 篇 termo fluids sl ...

作者

  • 2 篇 koziris nectario...
  • 2 篇 shantharam manu
  • 2 篇 bipin b.
  • 2 篇 raghavan padma
  • 2 篇 chatterjee anirb...
  • 2 篇 aykanat cevdet
  • 2 篇 goumas georgios
  • 1 篇 oyarzun g.
  • 1 篇 liu changyin
  • 1 篇 mo zeyao
  • 1 篇 kashimata tomoya
  • 1 篇 ogawa yuka
  • 1 篇 lane phillip all...
  • 1 篇 lu dianjie
  • 1 篇 zhu shengxin
  • 1 篇 kogou junko
  • 1 篇 acer seher
  • 1 篇 maggioni marco
  • 1 篇 kimura keiji
  • 1 篇 mishra ashirbad

语言

  • 24 篇 英文
  • 1 篇 其他
检索条件"主题词=Sparse Matrix Vector Multiplication"
25 条 记 录,以下是11-20 订阅
排序:
Partitioning sparse Deep Neural Networks for Scalable Training and Inference  21
Partitioning Sparse Deep Neural Networks for Scalable Traini...
收藏 引用
35th ACM International Conference on Supercomputing (ICS)
作者: Demirci, Gunduz Vehbi Ferhatosmanoglu, Hakan Univ Warwick Coventry W Midlands England
The state-of-the-art deep neural networks (DNNs) have significant computational and data management requirements. The size of both training data and models continue to increase. Sparsification and pruning methods are ... 详细信息
来源: 评论
Fast Spectral Graph Layout on Multicore Platforms  20
Fast Spectral Graph Layout on Multicore Platforms
收藏 引用
49th International Conference on Parallel Processing (ICPP)
作者: Mishra, Ashirbad Kirmani, Shad Madduri, Kamesh Penn State Univ University Pk PA 16802 USA eBay Inc San Jose CA USA
We present ParHDE, a shared-memory parallelization of the High-Dimensional Embedding (HDE) graph algorithm. Originally proposed as a graph drawing algorithm, HDE characterizes the global structure of a graph and is cl... 详细信息
来源: 评论
CSCC: Convolution Split Compression Calculation Algorithm for Deep Neural Network
收藏 引用
IEEE ACCESS 2019年 7卷 71607-71615页
作者: Fan, Shengyu Yu, Hui Lu, Dianjie Jiao, Shuai Xu, Weizhi Liu, Fangai Liu, Zhiyong Shandong Normal Univ Sch Informat Sci & Engn Jinan 250358 Shandong Peoples R China Shandong Normal Univ Sch Business Jinan 250358 Shandong Peoples R China Chinese Acad Sci Inst Comp Technol Beijing 100190 Peoples R China
Convolutional Neural Networks (CNNs) have become one of the most successful machine learning techniques for image and video processing. The most computationally intensive part of the CNN is the convolutional layers, w... 详细信息
来源: 评论
Evaluate Metadata of sparse matrix for SpMV on Shared Memory Architecture
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 2019年 第11期10卷 614-623页
作者: Maruf, Nazmul Ahasan Ahmed, Waseem King Abdulaziz Univ Fac Comp & Informat Technol Jeddah Saudi Arabia
sparse matrix operations are frequently used operations in scientific, engineering and high-performance computing (HPC) applications. Among them, sparse matrix-vector multiplication (SpMV) is a popular kernel and cons... 详细信息
来源: 评论
Exploiting dense substructures for fast sparse matrix vector multiplication
收藏 引用
INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS 2011年 第3期25卷 328-341页
作者: Shantharam, Manu Chatterjee, Anirban Raghavan, Padma Penn State Univ Dept Comp Sci & Engn University Pk PA 16802 USA Penn State Univ Inst CyberSci University Pk PA 16802 USA
The execution time of many scientific computing applications is dominated by the time spent in performing sparse matrix vector multiplication (SMV;y <- A . x). We consider improving the performance of SMV on multic... 详细信息
来源: 评论
Exploiting dense substructures for fast sparse matrix vector multiplication
Exploiting dense substructures for fast sparse matrix vector...
收藏 引用
Workshop on Clusters, Clouds and Grids for Scientific Computing (CCGSC)
作者: Shantharam, Manu Chatterjee, Anirban Raghavan, Padma Penn State Univ Dept Comp Sci & Engn University Pk PA 16802 USA Penn State Univ Inst CyberSci University Pk PA 16802 USA
The execution time of many scientific computing applications is dominated by the time spent in performing sparse matrix vector multiplication (SMV;y <- A . x). We consider improving the performance of SMV on multic... 详细信息
来源: 评论
Cascaded DMA Controller for Speedup of Indirect Memory Access in Irregular Applications  9
Cascaded DMA Controller for Speedup of Indirect Memory Acces...
收藏 引用
9th IEEE/ACM Workshop on Irregular Applications - Architectures and Algorithms (IA3)
作者: Kashimata, Tomoya Kitamura, Toshiaki Kimura, Keiji Kasahara, Hironori Waseda Univ Tokyo Japan
Indirect memory accesses caused by sparse linear algebra calculations are widely used in important real applications. However, they also cause serious inefficient memory accesses and pipeline stalls resulting in low e... 详细信息
来源: 评论
Design and Implementation of Adaptive SpMV Library for Multicore and Many-Core Architecture
收藏 引用
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 2018年 第4期44卷 1–25页
作者: Tan, Guangming Liu, Junhong Li, Jiajia Univ Chinese Acad Sci Chinese Acad Sci Inst Comp Technol State Key Lab Comp Architecture Beijing Peoples R China Georgia Inst Technol Computat Sci & Engn Atlanta GA 30332 USA Chinese Acad Sci Inst Comp Technol Beijing Peoples R China
sparse matrix vector multiplication (SpMV) is an important computational kernel in traditional highperformance computing and emerging data-intensive applications. Previous SpMV libraries are optimized by either applic... 详细信息
来源: 评论
A Recursive Hypergraph Bipartitioning Framework for Reducing Bandwidth and Latency Costs Simultaneously
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2017年 第2期28卷 345-358页
作者: Selvitopi, Oguz Acer, Seher Aykanat, Cevdet Bilkent Univ Dept Comp Engn TR-06800 Ankara Turkey
Intelligent partitioning models are commonly used for efficient parallelization of irregular applications on distributed systems. These models usually aim to minimize a single communication cost metric, which is eithe... 详细信息
来源: 评论
Lower Bounds in the Asymmetric External Memory Model  17
Lower Bounds in the Asymmetric External Memory Model
收藏 引用
29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
作者: Jacob, Riko Sitchinava, Nodari IT Univ Copenhagen Rued Langgaards Vej 7 DK-2300 Copenhagen S Denmark Univ Hawaii Manoa Informat & Comp Sci 1680 East West RdPOST 317 Honolulu HI 96822 USA
Motivated by the asymmetric read and write costs of emerging non-volatile memory technologies, we study lower bounds for the problems of sorting, permuting and multiplying a sparse matrix by a dense vector in the asym... 详细信息
来源: 评论