咨询与建议

限定检索结果

文献类型

  • 18 篇 会议
  • 15 篇 期刊文献

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 22 篇 计算机科学与技术...
    • 14 篇 电气工程
    • 6 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 5 篇 软件工程
    • 4 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 仪器科学与技术
    • 1 篇 生物医学工程(可授...
  • 4 篇 理学
    • 3 篇 物理学
    • 1 篇 系统科学
  • 4 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 33 篇 sparse represent...
  • 11 篇 face recognition
  • 3 篇 image classifica...
  • 2 篇 collaborative re...
  • 2 篇 dual-tree comple...
  • 2 篇 fault diagnosis
  • 2 篇 compound fault d...
  • 2 篇 video representa...
  • 2 篇 wavelet packet t...
  • 2 篇 composite failur...
  • 2 篇 ica
  • 2 篇 tunable q-factor...
  • 2 篇 gearbox
  • 2 篇 human action rec...
  • 2 篇 low-rank represe...
  • 2 篇 local binary pat...
  • 2 篇 dictionary learn...
  • 2 篇 3d face recognit...
  • 2 篇 image representa...
  • 2 篇 rejection classi...

机构

  • 2 篇 northwestern pol...
  • 2 篇 nanjing univ sci...
  • 1 篇 department of el...
  • 1 篇 china univ petr ...
  • 1 篇 us army lab adel...
  • 1 篇 department of me...
  • 1 篇 xidian univ dept...
  • 1 篇 key laboratory o...
  • 1 篇 univ chinese aca...
  • 1 篇 biocomp res ctr ...
  • 1 篇 xian technol uni...
  • 1 篇 beijing key labo...
  • 1 篇 iran univ sci & ...
  • 1 篇 chinese acad sci...
  • 1 篇 curtin univ dept...
  • 1 篇 zhongyuan univer...
  • 1 篇 univ tehran dept...
  • 1 篇 jadavpur univ de...
  • 1 篇 eurecom dept mul...
  • 1 篇 zhejiang univ sc...

作者

  • 2 篇 yang yang
  • 2 篇 huang thomas s.
  • 2 篇 yu fa-jun
  • 2 篇 zhang haichao
  • 2 篇 yang jian
  • 2 篇 zhao qi-feng
  • 2 篇 zhang yanning
  • 2 篇 liu yi-cai
  • 2 篇 yan hui
  • 1 篇 yu fajun
  • 1 篇 ji jian
  • 1 篇 jia hanghua
  • 1 篇 lu ke
  • 1 篇 liu wanquan
  • 1 篇 jayachitra j.
  • 1 篇 yang bo
  • 1 篇 guo chujian
  • 1 篇 ma jiayi
  • 1 篇 wen yandong
  • 1 篇 karimi mirhossei...

语言

  • 30 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Sparse Representation based Classification"
33 条 记 录,以下是11-20 订阅
排序:
sparse representation and Collaborative representation? Both Help Image classification
收藏 引用
IEEE ACCESS 2019年 7卷 76061-76070页
作者: Xie, Wen-Yang Liu, Bao-Di Shao, Shuai Li, Ye Wang, Yan-Jiang China Univ Petr Huadong Coll Informat & Control Engn Qingdao 266580 Shandong Peoples R China Qilu Univ Technol Shandong Comp Sci Ctr Shandong Prov Key Lab Comp Networks Jinan 250353 Shandong Peoples R China
Image classification has attracted more and more attention. During the past decades, image classification has shown growing interest in representation-based classification methods, such as sparse representation-based ... 详细信息
来源: 评论
IMPROVED COMBINATION OF LBP AND sparse representation based classification (SRC) FOR FACE RECOGNITION
IMPROVED COMBINATION OF LBP AND SPARSE REPRESENTATION BASED ...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Min, Rui Dugelay, Jean-Luc EURECOM Dept Multimedia Commun Sophia Antipolis France
Recently, local binary patterns (LBP) based descriptors and sparse representation based classification (SRC) become both eminent techniques in face recognition. Preliminary techniques of combining LBP and SRC have bee... 详细信息
来源: 评论
EFFICIENT MULTI-DOMAIN DICTIONARY LEARNING WITH GANS  7
EFFICIENT MULTI-DOMAIN DICTIONARY LEARNING WITH GANS
收藏 引用
7th IEEE Global Conference on Signal and Information Processing (IEEE GlobalSIP)
作者: Wu, Cho Ying Neumann, Ulrich Univ Southern Calif Dept Comp Sci Los Angeles CA 90007 USA
In this paper, we propose the multi-domain dictionary learning (MDDL) to make dictionary learning-based classification more robust to data representing in different domains. We use adversarial neural networks to gener... 详细信息
来源: 评论
Hierarchical sparse coding from a Bayesian perspective
收藏 引用
NEUROCOMPUTING 2018年 272卷 279-293页
作者: Zhang, Yupei Xiang, Ming Yang, Bo Xi An Jiao Tong Univ Dept Comp Sci & Technol Sch Elect & Informat Engn Xian Shaanxi Peoples R China
We consider the problem of hierarchical sparse coding, where not only a few groups of atoms are active at a time but also each group enjoys internal sparsity. The current approaches are usually to achieve between-grou... 详细信息
来源: 评论
Face Recognition: A sparse representation-based classification Using Independent Component Analysis
Face Recognition: A Sparse Representation-based Classificati...
收藏 引用
International Symposium on Telecommunications
作者: Mirhossein Mousavi Karimi Hamid Soltanian-Zadeh Department of Electrical and Computer Engineering University of Tehran
In this paper, we will describe a new method based on sparse representation-based classification (SRC) for face recognition. We have used histogram equalization as a preprocessing method in order to overcome the illum... 详细信息
来源: 评论
Combination of LBP and ESRC for Single Sample Infrared and Visible Face Fusion Recognition
Combination of LBP and ESRC for Single Sample Infrared and V...
收藏 引用
International Conference on Image and Video Processing, and Artificial Intelligence (IVPAI)
作者: Xie, Zhihua Jiangxi Sci & Technol Normal Univ Key Lab Opt Elect & Commun Nanchang Jiangxi Peoples R China
Near infrared and visible fusion recognition is an active topic for robust face recognition. Local binary patterns (LBP) based descriptors and sparse representation based classification (SRC) become two significant te... 详细信息
来源: 评论
GBU based Face Recognition Techniques: A Review  4
GBU Based Face Recognition Techniques: A Review
收藏 引用
4th International Conference on Advanced Computing and Communication Systems (ICACCS)
作者: Jayachitra, J. Devi, K. Suganya Vaiyshnavi, M. P. Srinivasan, P. IFET Coll Engn Dept IT Villupuram India Univ Coll Engn Dept CSE Panruti India Univ Coll Engn Dept Phys Panruti India
A large number of face recognition algorithms have been developed in last decades. Over the past four decades, performance of Face Recognition on frontal faces in controlled environment has improved significantly but ... 详细信息
来源: 评论
Structured occlusion coding for robust face recognition
收藏 引用
NEUROCOMPUTING 2016年 178卷 11-24页
作者: Wen, Yandong Liu, Weiyang Yang, Meng Fu, Yuli Xiang, Youjun Hu, Rui S China Univ Technol Sch Elect & Informat Engn Guangzhou 510641 Guangdong Peoples R China Peking Univ Sch Elect & Comp Engn Beijing Peoples R China Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China
Occlusion in face recognition is a common yet challenging problem. While sparse representation based classification (SRC) has been shown promising performance in laboratory conditions (i.e. noiseless or random pixel c... 详细信息
来源: 评论
sparse discriminative feature weights learning
收藏 引用
NEUROCOMPUTING 2016年 第Part3期173卷 1936-1942页
作者: Yan, Hui Yang, Jian Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Jiangsu Peoples R China
sparse representation, a locality-based data representation method, leads to promising results in many scientific and engineering fields. Meanwhile in the study of feature selection, locality preserving is widely reco... 详细信息
来源: 评论
Global linear regression coefficient classifier for recognition
收藏 引用
OPTIK 2015年 第21期126卷 3234-3239页
作者: Feng, Qingxiang Zhu, Xingjie Pan, Jeng-Shyang Harbin Inst Technol Shenzhen Grad Sch Innovat Informat Ind Res Ctr Shenzhen Peoples R China China Hua Rang Holdings Corp LTD Dev Ctr Beijing Peoples R China
In this paper, a novel classifier based on linear regression classification (LRC), called global linear regression coefficient (GLRC) classifier, is proposed for recognition. LRC classifier uses the test sample and th... 详细信息
来源: 评论