咨询与建议

限定检索结果

文献类型

  • 78 篇 期刊文献
  • 52 篇 会议
  • 1 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 117 篇 工学
    • 59 篇 电气工程
    • 42 篇 计算机科学与技术...
    • 19 篇 信息与通信工程
    • 18 篇 仪器科学与技术
    • 17 篇 控制科学与工程
    • 9 篇 电子科学与技术(可...
    • 5 篇 机械工程
    • 4 篇 测绘科学与技术
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 2 篇 力学(可授工学、理...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 光学工程
  • 50 篇 理学
    • 20 篇 物理学
    • 13 篇 数学
    • 11 篇 化学
    • 9 篇 生物学
    • 5 篇 地球物理学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 地理学
  • 7 篇 医学
    • 5 篇 临床医学
    • 3 篇 特种医学
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 3 篇 农学
    • 2 篇 农业资源与环境
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 文学

主题

  • 132 篇 sparse component...
  • 62 篇 blind source sep...
  • 17 篇 independent comp...
  • 13 篇 underdetermined ...
  • 12 篇 dictionary learn...
  • 7 篇 mixing matrix es...
  • 7 篇 sparse coding
  • 6 篇 sparse represent...
  • 6 篇 k-means
  • 5 篇 wavelet transfor...
  • 5 篇 component analys...
  • 4 篇 clustering
  • 4 篇 bounded componen...
  • 4 篇 correlation
  • 3 篇 finite sample si...
  • 3 篇 acoustic emissio...
  • 3 篇 nonnegative matr...
  • 3 篇 dictionary ident...
  • 3 篇 composite
  • 3 篇 chemometrics

机构

  • 6 篇 sharif univ tech...
  • 4 篇 beijing univ che...
  • 3 篇 beijing normal u...
  • 3 篇 rudjer boskovic ...
  • 3 篇 univ sci & techn...
  • 3 篇 rudjer boskovic ...
  • 3 篇 idiap res inst m...
  • 2 篇 univ elect sci &...
  • 2 篇 univ regensburg ...
  • 2 篇 kunming univ sci...
  • 2 篇 department of el...
  • 2 篇 mcmaster univ de...
  • 2 篇 shanghai normal ...
  • 2 篇 riken lab adv br...
  • 2 篇 nanyang technol ...
  • 2 篇 ctr tech spatial...
  • 2 篇 dalian univ tech...
  • 2 篇 wuhan univ state...
  • 2 篇 hebei univ techn...
  • 2 篇 mie univ grad sc...

作者

  • 5 篇 deville yannick
  • 5 篇 schnass karin
  • 5 篇 kopriva ivica
  • 4 篇 hosseini shahram
  • 4 篇 jutten christian
  • 4 篇 zayyani hadi
  • 4 篇 wang huaqing
  • 4 篇 babaie-zadeh mas...
  • 3 篇 yannick deville
  • 3 篇 asaei afsaneh
  • 3 篇 erdogan alper t.
  • 3 篇 reilly james p.
  • 3 篇 mourad nasser
  • 3 篇 hao yansong
  • 3 篇 bourlard herve
  • 3 篇 james p. reilly
  • 3 篇 karoui moussa so...
  • 3 篇 nasser mourad
  • 3 篇 hu dan
  • 3 篇 qin shaoqian

语言

  • 124 篇 英文
  • 8 篇 其他
检索条件"主题词=Sparse component analysis"
132 条 记 录,以下是1-10 订阅
排序:
A Novel Weighted sparse component analysis for Underdetermined Blind Speech Separation
A Novel Weighted Sparse Component Analysis for Underdetermin...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: He, Yudong Woo, Baeck Hyun So, Richard H.Y. The Department of Industry Engineering & Decision Analytics The Hong Kong University of Science and Technology Hong Kong
sparse component analysis (SCA) is a popular underdetermined blind speech separation (UBSS) method. It models all sources to have an identical distribution. As speeches do not have identical distribution, SCA performs... 详细信息
来源: 评论
sparse component analysis Based on Hierarchical Hough Transform
收藏 引用
CIRCUITS SYSTEMS AND SIGNAL PROCESSING 2017年 第4期36卷 1569-1585页
作者: Jin, Yi Qin, Shaoqian Zhu, Changan Univ Sci & Technol China Dept Precis Machinery & Precis Instrumentat Hefei 230027 Anhui Peoples R China
sparse component analysis (SCA) has been extensively studied to solve undetermined blind source separation problem in various fields over the last decades. This paper proposes a SCA algorithm based on hierarchical Hou... 详细信息
来源: 评论
sparse component analysis Using Time-Frequency Representations for Operational Modal analysis
收藏 引用
SENSORS 2015年 第3期15卷 6497-6519页
作者: Qin, Shaoqian Guo, Jie Zhu, Changan Univ Sci & Technol China Dept Precis Machinery & Precis Instrumentat Hefei 230027 Peoples R China
sparse component analysis (SCA) has been widely used for blind source separation(BSS) for many years. Recently, SCA has been applied to operational modal analysis (OMA), which is also known as output-only modal identi... 详细信息
来源: 评论
sparse component analysis-based under-determined blind source separation for bearing fault feature extraction in wind turbine gearbox
收藏 引用
IET RENEWABLE POWER GENERATION 2017年 第3期11卷 330-337页
作者: Hu, Chun-zhi Yang, Qiang Huang, Miao-ying Yan, Wen-jun Zhejiang Univ Coll Elect Engn Hangzhou 310027 Peoples R China
The signal processing-based bearing fault diagnosis in wind turbine gearbox is considered challenging as the vibration signals collected from acceleration transducers are, in general, a mixture of signals originating ... 详细信息
来源: 评论
sparse component analysis based on an improved ant K-means clustering algorithm for underdetermined blind source separation  16
Sparse component analysis based on an improved ant K-means c...
收藏 引用
16th IEEE International Conference on Networking, Sensing and Control (ICNSC)
作者: Wei, Shuang Wang, Feng Jiang, Defu Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai Peoples R China Hohai Univ Coll Comp & Informat Array & Informat Proc Lab Nanjing Jiangsu Peoples R China
This paper proposed an improved sparse component analysis (SCA) approach to improve the performance of underdetermined blind source separation for the acoustic/speech sources. First, the pre-processing to build a spar... 详细信息
来源: 评论
sparse component analysis VIA DYADIC CYCLIC DESCENT
SPARSE COMPONENT ANALYSIS VIA DYADIC CYCLIC DESCENT
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Ulfarsson, M. O. Solo, V. Univ Iceland Dept Elect Engn Reykjavik Iceland
sparse component analysis (SCA) is a widely used method for solving the blind source separation problem. We develop a new cyclic descent algorithm for SCA based on a dyadic expansion. To select the associated tuning p... 详细信息
来源: 评论
sparse component analysis Based on Support Vector Machine for Fault Diagnosis of Roller Bearings
Sparse Component Analysis Based on Support Vector Machine fo...
收藏 引用
International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
作者: Tang, Gang Li, Guozheng Wang, Huaqing Beijing Univ Chem Technol Coll Mech & Elect Engn Beijing Peoples R China
In order to improve the separation performance of blind source separation, a sparse component analysis method based on support vector machine is proposed. Firstly, the sample points of the observed composite signals a... 详细信息
来源: 评论
sparse component analysis in presence of noise using an iterative EM-MAP algorithm
收藏 引用
7th International Conference on Independent component analysis and Signal Separation
作者: Zayyani, Hadi Babaie-Zadeh, Massoud Mohimani, G. Hosein Jutten, Christian Sharif Univ Technol ACRI Dept Elect Engn Tehran Iran Inst Natl Polytech Grenoble Dept Images & Signals GIPSA Lab Grenoble France
In this paper, a new algorithm for source recovery in under-determined sparse component analysis (SCA) or atomic decomposition on over-complete dictionaries is presented in the noisy case. The algorithm is essentially... 详细信息
来源: 评论
sparse component analysis for Speech Recognition in Multi-Speaker Environment
Sparse Component Analysis for Speech Recognition in Multi-Sp...
收藏 引用
11th Annual Conference of the International-Speech-Communication-Association 2010
作者: Asaei, Afsaneh Bourlard, Herve Garner, Philip N. Idiap Res Inst Martigny Switzerland
sparse component analysis is a relatively young technique that relies upon a representation of signal occupying only a small part of a larger space. Mixtures of sparse components are disjoint in that space. As a parti... 详细信息
来源: 评论
A criterion for the construction of a regularization function in sparse component analysis
收藏 引用
CIRCUITS SYSTEMS AND SIGNAL PROCESSING 2005年 第4期24卷 315-325页
作者: Du, XY Hu, WD Yu, WX Natl Univ Def Technol ATR Key Lab Changsha 410073 Peoples R China
With the application of regularization, sparse component analysis (SCA) becomes an effective approximate method for finding the sparsest solution of signal decomposition in an overcomplete dictionary. In this paper, t... 详细信息
来源: 评论