咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 object-based ima...
  • 1 篇 deep learning
  • 1 篇 task analysis
  • 1 篇 image segmentati...
  • 1 篇 land cover class...
  • 1 篇 spatial temporal...
  • 1 篇 satellite image ...
  • 1 篇 earth
  • 1 篇 attention-based ...
  • 1 篇 time series anal...
  • 1 篇 satellites
  • 1 篇 data models
  • 1 篇 convolutional ne...

机构

  • 1 篇 cirad umr tetis ...
  • 1 篇 univ turin dept ...
  • 1 篇 univ montpellier...

作者

  • 1 篇 gbodjo yawogan j...
  • 1 篇 interdonato robe...
  • 1 篇 gaetano raffaele
  • 1 篇 pensa ruggero ga...
  • 1 篇 censi alessandro...
  • 1 篇 ienco dino

语言

  • 1 篇 英文
检索条件"主题词=Spatial temporal graph convolutional neural network"
1 条 记 录,以下是1-10 订阅
排序:
Attentive spatial temporal graph CNN for Land Cover Mapping From Multi temporal Remote Sensing Data
收藏 引用
IEEE ACCESS 2021年 9卷 23070-23082页
作者: Censi, Alessandro Michele Ienco, Dino Gbodjo, Yawogan Jean Eudes Pensa, Ruggero Gaetano Interdonato, Roberto Gaetano, Raffaele Univ Montpellier UMR TETIS INRAE F-34000 Montpellier France Univ Turin Dept Comp Sci I-10124 Turin Italy CIRAD UMR TETIS F-34090 Montpellier France
Satellite image time series (SITS) collected by modern Earth Observation (EO) systems represent a valuable source of information that supports several tasks related to the monitoring of the Earth surface dynamics over... 详细信息
来源: 评论