咨询与建议

限定检索结果

文献类型

  • 230 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 327 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 301 篇 工学
    • 176 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 32 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 8 篇 生物医学工程(可授...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 64 篇 理学
    • 20 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 12 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 49 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 25 篇 医学
    • 16 篇 临床医学
    • 6 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 327 篇 stacked autoenco...
  • 93 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 14 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 support vector m...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 nantong inst tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 li shunming
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 mitra pabitra
  • 3 篇 lu jiantao
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang

语言

  • 308 篇 英文
  • 13 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=Stacked Autoencoder"
327 条 记 录,以下是281-290 订阅
The Comparison of deep learning recognition methods based on SAR image
The Comparison of deep learning recognition methods based on...
收藏 引用
IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)
作者: Zhai, Jia Zhu, Sha Chen, Feng Xie, Xiaodan Zhu, Yong Yin, Hongcheng Sci & Technol Electromagnet Scattering Lab Beijing Peoples R China Beijing Inst Remote Sensing Informat Beijing Peoples R China Sci & Technol Opt Radiat Lab Beijing Peoples R China
Aiming at the problem of Synthetic Aperture Radar (SAR) target recognition, a new deep learning method is proposed. The stacked Auto Encoder (SAE) network and the convolutional Neural Network (CNN) have remarkable per... 详细信息
来源: 评论
Combating Threat-Alert Fatigue with Online Anomaly Detection Using Isolation Forest  26th
Combating Threat-Alert Fatigue with Online Anomaly Detection...
收藏 引用
26th International Conference on Neural Information Processing (ICONIP) of the Asia-Pacific-Neural-Network-Society (APNNS)
作者: Aminanto, Muhamad Erza Zhu, Lei Ban, Tao Isawa, Ryoichi Takahashi, Takeshi Inoue, Daisuke Natl Inst Informat & Commun Technol Tokyo Japan Lingnan Normal Univ Zhanjiang Peoples R China
The threat-alert fatigue problem, which is the inability of security operators to genuinely investigate each alert coming from network-based intrusion detection systems, causes many unexplored alerts and hence a deter... 详细信息
来源: 评论
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON stacked MARGINAL DISCRIMINATIVE autoencoder  37
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON STACKED MARGINAL...
收藏 引用
IEEE International Geoscience & Remote Sensing Symposium
作者: Feng, Jie Liu, Liguo Zhang, Xiangrong Wang, Rongfang Liu, Hongying Xidian Univ Key Lab Intelligent Percept & Image Undersatnding Minist Educ Xian 710071 Shaanxi Peoples R China
In this paper, a novel stacked marginal discriminative autoencoder (SMDAE) method is proposed for hyperspectral image classification. It uses a deep neural network to learn discriminative features from hyperspectral i... 详细信息
来源: 评论
SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2018年 第17期77卷 22809-22820页
作者: Xiao, Zhiyong Wang, Canhua Jia, Nan Wu, Jianhua Nanchang Univ Sch Mechatron Engn Nanchang 330031 Jiangxi Peoples R China Jiangxi Agr Univ Sch Software Nanchang 330045 Jiangxi Peoples R China Jiangxi Univ Tradit Chinese Med Sch Comp Nanchang 330004 Jiangxi Peoples R China Nanchang Univ Sch Informat Engn Nanchang 330031 Jiangxi Peoples R China
This paper employs a novel-deep learning method and brain frequencies to discriminate school-aged children with autism spectrum disorders (ASD) from typically developing (TD) school-aged children with functional magne... 详细信息
来源: 评论
Performance improvement of deep neural network classifiers by a simple training strategy
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2018年 67卷 14-23页
作者: Caliskan, Abdullah Yuksel, Mehmet Emin Badem, Hasan Basturk, Alper Erciyes Univ Dept Biomed Engn Kayseri Turkey Erciyes Univ Dept Comp Engn Kayseri Turkey Kahramanmaras Sutcu Imam Univ Dept Comp Engn Kahramanmaras Turkey
Improving the classification performance of Deep Neural Networks (DNN) is of primary interest in many different areas of science and technology involving the use of DNN classifiers. In this study, we present a simple ... 详细信息
来源: 评论
Deep multi-view representation learning for social images
收藏 引用
APPLIED SOFT COMPUTING 2018年 73卷 106-118页
作者: Huang, Feiran Zhang, Xiaoming Zhao, Zhonghua Li, Zhoujun He, Yueying Beihang Univ State Key Lab Software Dev Environm Beijing 100191 Peoples R China Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China Coordinat Ctr China Natl Comp Network Emergency Response Tech Team Beijing 100029 Peoples R China
Multi-view representation learning for social images has recently made remarkable achievements in many tasks, such as cross-view classification and cross-modal retrieval. Since social images usually contain link infor... 详细信息
来源: 评论
Deep networks in identifying CT brain hemorrhage
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018年 第2期35卷 2215-2228页
作者: Helwan, Abdulkader El-Fakhri, Georges Sasani, Hadi Ozsahin, Dilber Uzun Near East Univ Dept Biomed Engn Near East Blvd TR-99138 Trnc Nicosia Turkey Harvard Med Sch Massachusetts Gen Hosp Gordon Ctr Med Imaging Radiol Boston MA USA
Deep learning algorithms have recently been applied to solving challenging problems in medicine such as medical image classification and analysis. In some areas, those algorithms have outperformed the human medical ex... 详细信息
来源: 评论
Deep Abstraction and Weighted Feature Selection for Wi-Fi Impersonation Detection
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2018年 第3期13卷 621-636页
作者: Aminanto, Muhamad Erza Choi, Rakyong Tanuwidjaja, Harry Chandra Yoo, Paul D. Kim, Kwangjo Korea Adv Inst Sci & Technol Sch Comp Daejeon 34141 South Korea Def Acad United Kingdom Cranfield Def & Secur Ctr Elect Warfare Informat & Cyber Shrivenham SN6 8LA Wilts England
The recent advances in mobile technologies have resulted in Internet of Things (IoT)-enabled devices becoming more pervasive and integrated into our daily lives. The security challenges that need to be overcome mainly... 详细信息
来源: 评论
Deep learning for pixel-level image fusion: Recent advances and future prospects
收藏 引用
INFORMATION FUSION 2018年 42卷 158-173页
作者: Liu, Yu Chen, Xun Wang, Zengfu Wang, Z. Jane Ward, Rabab K. Wang, Xuesong Hefei Univ Technol Dept Biomed Engn Hefei 230009 Anhui Peoples R China Univ Sci & Technol China Dept Elect Sci & Technol Hefei 230026 Anhui Peoples R China Univ Sci & Technol China Dept Automat Hefei 230026 Anhui Peoples R China Univ British Columbia Dept Elect & Comp Engn Vancouver BC Canada China Univ Min & Technol Sch Informat & Control Engn Xuzhou 221116 Peoples R China
By integrating the information contained in multiple images of the same scene into one composite image, pixel-level image fusion is recognized as having high significance in a variety of fields including medical imagi... 详细信息
来源: 评论
A Novel Method of Building Functional Brain Network Using Deep Learning Algorithm with Application in Proficiency Detection
收藏 引用
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS 2019年 第1期29卷 1850015-1850015页
作者: Hua, Chengcheng Wang, Hong Wang, Hong Lu, Shaowen Liu, Chong Khalid, Syed Madiha Northeastern Univ Dept Mech Engn & Automat Shenyang 110819 Liaoning Peoples R China Univ Manchester Control Syst Ctr Manchester Lancs England Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110189 Liaoning Peoples R China
Functional brain network (FBN) has become very popular to analyze the interaction between cortical regions in the last decade. But researchers always spend a long time to search the best way to compute FBN for their s... 详细信息
来源: 评论