咨询与建议

限定检索结果

文献类型

  • 227 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 324 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 298 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 324 篇 stacked autoenco...
  • 92 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 13 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 semi-supervised ...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 308 篇 英文
  • 14 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=Stacked Autoencoder"
324 条 记 录,以下是321-330 订阅
排序:
DL-PRO: A Novel Deep Learning Method for Protein Model Quality Assessment
DL-PRO: A Novel Deep Learning Method for Protein Model Quali...
收藏 引用
International Joint Conference on Neural Networks
作者: Son P. Nguyen Yi Shang Dong Xu Department of Computer Science University of Missouri
Computational protein structure prediction is very important for many applications in bioinformatics. In the process of predicting protein structures, it is essential to accurately assess the quality of generated mode... 详细信息
来源: 评论
An effective feature extraction method for fault classification and its application to industrial processes
An effective feature extraction method for fault classificat...
收藏 引用
第33届中国过程控制会议
作者: Adil Masud Aman Yalin Wang Chenliang Liu Xiaofeng Yuan Kai Wang Lixue Huang the School of Automation Central South University the Xinjiang Luobupo Potassium Salt Co.Ltd
Since industrial process data often presents complexity and nonlinearity,this study proposes a deep learning model based on semi-supervised Inter-Relational Mahalanobis stacked autoencoder(IRM-SAE) to learn deep fault... 详细信息
来源: 评论
A spatial temporal neighborhood preserving method for feature learning with an industrial application
A spatial temporal neighborhood preserving method for featur...
收藏 引用
第32届中国过程控制会议(CPCC2021)
作者: Chenliang Liu Yalin Wang Kai Wang Xiaofeng Yuan School of Automation Central South University
Modern industrial process data often exhibit nonlinear and dynamic *** deep learning methods,such as stacked autoencoder(SAE),have excellent nonlinear feature learning capabilities,but they ignore the dynamic correlat... 详细信息
来源: 评论
Neural network with deep learning architectures
收藏 引用
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2018年 第1期39卷 31-38页
作者: Patel, Hima Thakkar, Amit Pandya, Mrudang Makwana, Kamlesh Charotar Univ Sci & Technol Changa 388421 Gujarat India
Deep Learning is a field included in to Artificial Intelligence. It allows computational models to learn multiple levels of abstraction with multiple processing layers. This Artificial Neural Networks gives state-of-a... 详细信息
来源: 评论