咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 55 篇 计算机科学与技术...
    • 38 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 12 篇 仪器科学与技术
    • 10 篇 软件工程
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 食品科学与工程(可...
  • 23 篇 理学
    • 8 篇 生物学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 医学
    • 11 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 中西医结合
    • 2 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 农学

主题

  • 114 篇 stacked denoisin...
  • 39 篇 deep learning
  • 9 篇 feature extracti...
  • 8 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 5 篇 noise reduction
  • 5 篇 deep neural netw...
  • 5 篇 convolutional ne...
  • 4 篇 collaborative fi...
  • 4 篇 ensemble learnin...
  • 4 篇 recommender syst...
  • 4 篇 extreme learning...
  • 3 篇 compressive sens...
  • 3 篇 transfer learnin...
  • 3 篇 indoor positioni...
  • 3 篇 neural networks
  • 3 篇 cognitive worklo...
  • 3 篇 unsupervised fea...
  • 3 篇 gated recurrent ...
  • 3 篇 feature learning

机构

  • 3 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 jiangsu univ sch...
  • 3 篇 oslo metropolita...
  • 2 篇 tongji univ sch ...
  • 2 篇 tsinghua univ sh...
  • 2 篇 natl engn res ct...
  • 2 篇 china univ geosc...
  • 2 篇 cent south univ ...
  • 2 篇 harbin univ sci ...
  • 2 篇 guangdong univ t...
  • 1 篇 hefei univ techn...
  • 1 篇 newcastle univ s...
  • 1 篇 hangzhou appl ac...
  • 1 篇 east china univ ...
  • 1 篇 johns hopkins un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ ulsan sch e...
  • 1 篇 dalian univ tech...
  • 1 篇 xi an jiao tong ...

作者

  • 5 篇 yu jianbo
  • 3 篇 zhou xin
  • 3 篇 xu fan
  • 3 篇 sun jun
  • 3 篇 zhang jianhua
  • 3 篇 yin zhong
  • 2 篇 zhang lei
  • 2 篇 zhao chunjiang
  • 2 篇 xu min
  • 2 篇 wang yongxiong
  • 2 篇 dai penglin
  • 2 篇 wang shijin
  • 2 篇 yang fang
  • 2 篇 liu yutian
  • 2 篇 zheng zhanpeng
  • 2 篇 yu jun
  • 2 篇 xu lin
  • 2 篇 shi lei
  • 2 篇 wang cong
  • 2 篇 wang jianxin

语言

  • 111 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=Stacked Denoising Autoencoder"
114 条 记 录,以下是111-120 订阅
排序:
MULTI-MODAL SERVICE OPERATION ESTIMATION USING DNN-BASED ACOUSTIC BAG-OF-FEATURES
MULTI-MODAL SERVICE OPERATION ESTIMATION USING DNN-BASED ACO...
收藏 引用
European Signal Processing Conference
作者: Satoshi Tamura Takuya Uno Masanori Takehara Satoru Hayamizu Takeshi Kurata Department of Information Science Gifu University Center for Service Research AIST
In service engineering it is important to estimate when and what a worker did, because they include crucial evidences to improve service quality and working environments. For Service Operation Estimation (SOE), acoust... 详细信息
来源: 评论
Machine Learning for Data Reduction in Quantum State Tomography
Machine Learning for Data Reduction in Quantum State Tomogra...
收藏 引用
第37届中国控制会议
作者: Ximin Liu Sicong Lu Rebing Wu Institute of Microelectronics Tsinghua University Department of Automation Tsinghua University
The purpose of quantum state tomography(QST) is to obtain a complete quantum state by reconstructing a density matrix from experimental data and therefore gives researchers a powerful tool to analyze complex synthet... 详细信息
来源: 评论
State Assessment and Fault Prediction Method of Distribution Terminal Based on SDAE and Hierarchical Bayesian
State Assessment and Fault Prediction Method of Distribution...
收藏 引用
Sustainable Power and Energy Conference (iSPEC)
作者: Runmiao Liu Shiyong Feng Yueming Cai Mingxiang Liu NARI Group Co. Ltd State Grid Electric Power Research Institute Nanjing China
State Assessment and Fault Prediction mechanism of distribution terminal is the premise of ensuring safe and reliable operation of power grid. However, the sample size of fault rate data of distribution terminal is us... 详细信息
来源: 评论
Hybrid Deep Neural Network based on SDAE and GRUNN
Hybrid Deep Neural Network based on SDAE and GRUNN
收藏 引用
第三十九届中国控制会议
作者: Yingyong Zou Jun Yu Jiangen Tang Yongde Zhang School of Mechanical and Power Engineering Harbin University of Science and Technology College of Mechanical and Vehicular Engineering Changchun University Key Laboratory of Advanced Manufacturing and Intelligent Technology Harbin University of Science and Technology School of Automation Harbin University of Science and Technology
stacked autoencoder(SAE) is hard to achieve satisfactory performance,when input data are complex and ***,the identification performance of recurrent neural network(RNN) may decrease rapidly under noisy *** order to de... 详细信息
来源: 评论