咨询与建议

限定检索结果

文献类型

  • 227 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 324 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 298 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 324 篇 stacked autoenco...
  • 92 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 13 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 semi-supervised ...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 308 篇 英文
  • 14 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=Stacked autoencoder"
324 条 记 录,以下是141-150 订阅
排序:
stacked autoencoders and extreme learning machine based hybrid model for electrical load prediction
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019年 第4期37卷 5403-5416页
作者: Peng, Wei Xu, Liwen Li, Chengdong Xie, Xiuying Zhang, Guiqing Shandong Jianzhu Univ Sch Informat & Elect Engn Jinan 250101 Shandong Peoples R China Shandong Coinnovat Ctr Green Bldg Jinan 250101 Shandong Peoples R China
Electrical load prediction plays an important role in power system management and economic development. However, because electrical load has non-linear relationships with several factors such as the political environm... 详细信息
来源: 评论
stacked autoencoders Using Low-Power Accelerated Architectures for Object Recognition in Autonomous Systems
收藏 引用
NEURAL PROCESSING LETTERS 2016年 第2期43卷 445-458页
作者: Maria, Joao Amaro, Joao Falcao, Gabriel Alexandre, Luis A. Univ Coimbra Inst Telecomunicacoes Dept Elect & Comp Engn P-3030290 Coimbra Portugal Univ Beira Interior Dept Informat P-6201001 Covilha Portugal Univ Beira Interior Inst Telecomunicacoes P-6201001 Covilha Portugal
This paper investigates low-energy consumption and low-power hardware models and processor architectures for performing the real-time recognition of objects in power-constrained autonomous systems and robots. Most rec... 详细信息
来源: 评论
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON stacked MARGINAL DISCRIMINATIVE autoencoder  37
HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON STACKED MARGINAL...
收藏 引用
IEEE International Geoscience & Remote Sensing Symposium
作者: Feng, Jie Liu, Liguo Zhang, Xiangrong Wang, Rongfang Liu, Hongying Xidian Univ Key Lab Intelligent Percept & Image Undersatnding Minist Educ Xian 710071 Shaanxi Peoples R China
In this paper, a novel stacked marginal discriminative autoencoder (SMDAE) method is proposed for hyperspectral image classification. It uses a deep neural network to learn discriminative features from hyperspectral i... 详细信息
来源: 评论
stacked autoencoderS FOR MULTICLASS CHANGE DETECTION IN HYPERSPECTRAL IMAGES  38
STACKED AUTOENCODERS FOR MULTICLASS CHANGE DETECTION IN HYPE...
收藏 引用
38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Lopez-Fandino, Javier Garea, Alberto S. Heras, Dora B. Arguello, Francisco Univ Santiago de Compostela Ctr Singular Invest Tecnol Informac CiTIUS Santiago De Compostela Spain
Change detection (CD) in multitemporal datasets is a key task in remote sensing. In this paper, a scheme to perform multiclass CD for remote sensing hyperspectral datasets extracting features by means of stacked Autoe... 详细信息
来源: 评论
Mutual Information-Weighted Principle Components Identified From the Depth Features of stacked autoencoders and Original Variables for Oil Dry Point Soft Sensor
收藏 引用
IEEE ACCESS 2019年 7卷 1981-1990页
作者: Wang, Jie Yan, Xuefeng East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China
In modern chemical process control, the application of data-driven soft sensor has become increasingly extensive. Feature extraction is an important step in soft sensor. A novel feature extraction and integration meth... 详细信息
来源: 评论
Cross-lingual sentiment classification with stacked autoencoders
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2016年 第1期47卷 27-44页
作者: Zhou, Guangyou Zhu, Zhiyuan He, Tingting Hu, Xiaohua Tony Cent China Normal Univ Sch Comp Wuhan 430079 Peoples R China Cent China Normal Univ Sch Comp Nat Language Proc Lab Wuhan 430079 Peoples R China Chinese Inst Elect Beijing 100036 Peoples R China Drexel Univ Coll Comp & Informat Philadelphia PA 19104 USA
Cross-lingual sentiment classification is a popular research topic in natural language processing. The fundamental challenge of cross-lingual learning stems from a lack of overlap between the feature spaces of the sou... 详细信息
来源: 评论
Micro-crack detection method of steel beam surface using stacked autoencoders on massive full-scale sensing strains
收藏 引用
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL 2020年 第4期19卷 1175-1187页
作者: Song, Qingsong Chen, Yu Oskoui, Elias Abdoli Fang, Zheng Taylor, Todd Tang, Guangwu Zhao, Xiangmo Ansari, Farhad Changan Univ Sch Informat Engn Xian Peoples R China Univ Illinois Dept Civil & Mat Engn 842 W Taylor St Chicago IL 60607 USA China Merchants Chongqing Commun Technol Res & De State Key Lab Bridge Engn Struct Dynam Chongqing Peoples R China Hohai Univ Coll Water Conservancy & Hydropower Engn Nanjing Peoples R China
Accurate micro-crack detections on the whole surface of civil structures have great significance. Distributed optical fiber sensor based on Brillouin optical time-domain analysis technology exhibits great facility to ... 详细信息
来源: 评论
A Novel Prediction Method for Blast Furnace Gas Utilization Rate Based on Dynamic Weighted stacked Output-Relevant autoencoder
收藏 引用
STEEL RESEARCH INTERNATIONAL 2023年 第5期94卷
作者: Jiang, Zhaohui Zhu, Jicheng Pan, Dong Yu, Haoyang Zhou, Ke Gui, Weihua Cent South Univ Sch Automat Changsha 410083 Peoples R China Peng Cheng Lab Shenzhen 518000 Peoples R China
In the blast furnace (BF) ironmaking process, the gas utilization rate (GUR) is a crucial indicator for reflecting the energy consumption and operating status of BF. However, due to the complex and harsh environment i... 详细信息
来源: 评论
Adaptive parameter tuning stacked autoencoders for process monitoring
收藏 引用
SOFT COMPUTING 2020年 第17期24卷 12937-12951页
作者: Kong, Diehao Yan, Xuefeng East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China Tongji Univ Shanghai Inst Intelligent Sci & Technol Shanghai 200237 Peoples R China
In process monitoring based on stacked autoencoders (SAEs), the performance of monitoring models is directly decided by the validity of the structure and parameters, which are primarily determined by time-consuming ma... 详细信息
来源: 评论
A study of combination of autoencoders and boosted Big-Bang crunch theory architectures for Land-Use classification using remotely sensed imagery
收藏 引用
Scientific Reports 2025年 第1期15卷 1-18页
作者: Xiong, Qiongbing Wu, Xuecheng Yu, Cizhen Hosseinzadeh, Hasan College of Tourism Management Guizhou University of Commerce Guiyang Guizhou 550014 China Ardabil Branch Islamic Azad University Ardabil Iran College of Technical Engineering The Islamic University Najaf Iraq
The research introduced a new method for land-use classification by merging deep convolutional neural networks with a modified variant of a metaheuristic optimization technique. The methodology involved utilizing the ... 详细信息
来源: 评论