咨询与建议

限定检索结果

文献类型

  • 227 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 324 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 298 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 324 篇 stacked autoenco...
  • 92 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 13 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 semi-supervised ...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 308 篇 英文
  • 14 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=Stacked autoencoder"
324 条 记 录,以下是61-70 订阅
排序:
ZERO-SHOT LEARNING USING stacked autoencoder WITH MANIFOLD REGULARIZATIONS  26
ZERO-SHOT LEARNING USING STACKED AUTOENCODER WITH MANIFOLD R...
收藏 引用
26th IEEE International Conference on Image Processing (ICIP)
作者: Song, Jianqiang Shi, Guangming Xie, Xuemei Gao, Dahua Xidian Univ Sch Artificial Intelligence Xian 710071 Shaanxi Peoples R China
Zero-shot learning (ZSL), which focuses on transferring the knowledge from the seen classes to unseen ones, has attracted more and more attention in the computer vision community. Exploring the relationships among the... 详细信息
来源: 评论
Manifold Regularized stacked autoencoder for Feature Learning
Manifold Regularized Stacked Autoencoder for Feature Learnin...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Lu, Sicong Liu, Huaping Li, Chunwen Tsinghua Univ Sch Informat Sci & Technol Beijing 100084 Peoples R China
stacked autoencoders enjoy their popularization with the prosperity of deep learning in recent years. However, relative studies seldom exploit the intrinsic information buried in the interrelations between the samples... 详细信息
来源: 评论
A Semi-supervised stacked autoencoder Approach for Network Traffic Classification  28
A Semi-supervised Stacked Autoencoder Approach for Network T...
收藏 引用
28th IEEE International Conference on Network Protocols (IEEE ICNP)
作者: Aouedi, Ons Piamrat, Kandaraj Bagadthey, Dhruvjyoti Univ Nantes LS2N 2 Chemin Houssiniere Nantes France IIT Madras Dept Elect Engn Chennai 600036 Tamil Nadu India
Network traffic classification is an important task in modern communications. Several approaches have been proposed to improve the performance of differentiating among applications. However, most of them are based on ... 详细信息
来源: 评论
ROBUST FEATURE LEARNING BY stacked autoencoder WITH MAXIMUM CORRENTROPY CRITERION
ROBUST FEATURE LEARNING BY STACKED AUTOENCODER WITH MAXIMUM ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Qi, Yu Wang, Yueming Zheng, Xiaoxiang Wu, Zhaohui Zhejiang Univ Qiushi Acad Adv Studies Hangzhou 310003 Zhejiang Peoples R China
Unsupervised feature learning with deep networks has been widely studied in the recent years. Despite the progress, most existing models would be fragile to non-Gaussian noises and outliers due to the criterion of mea... 详细信息
来源: 评论
Prediction of the Indian summer monsoon using a stacked autoencoder and ensemble regression model (vol 37, pg 58, 2021)
收藏 引用
INTERNATIONAL JOURNAL OF FORECASTING 2021年 第3期37卷 1309-1309页
作者: Saha, Moumita Santara, Anirban Mitra, Pabitra Chakraborty, Arun Nanjundiah, Ravi S. [a]Department of Computer Science University of Colorado Boulder USA [b]Department of Computer Science and Engineering Indian Institute of Technology Kharagpur India [c]Centre for Oceans Rivers Atmosphere and Land Sciences Indian Institute of Technology Kharagpur India [d]Centre for Atmospheric and Oceanic Sciences Indian Institute of Science Bangalore India [e]Divecha Centre for Climate Change Indian Institute of Science Bangalore India [f]Indian Institute of Tropical Meteorology Pune India
The study of climatic variables that govern the Indian summer monsoon has been widely explored. In this work, we use a non-linear deep learning-based feature reduction scheme for the discovery of skilful predictors fo... 详细信息
来源: 评论
Sense-Through-Foliage Target Detection Based on stacked autoencoder and UWB Radar Sensor Networks  10th
Sense-Through-Foliage Target Detection Based on Stacked Auto...
收藏 引用
10th International Conference on Communications, Signal Processing, and Systems
作者: Mao, Chengchen Liang, Qilian Univ Texas Arlington Arlington TX 76019 USA
In this paper, we proposed a stacked autoencoder (SAE)-based approach to ultra wide band (UWB) radar for sense-through-foliage target detection. As one of the widely used deep learning structures, SAE could learn repr... 详细信息
来源: 评论
Deep Sparse Representation Classification with stacked autoencoder  15
Deep Sparse Representation Classification with Stacked Autoe...
收藏 引用
15th International Conference on Computational Intelligence and Security (CIS)
作者: Xu, Bingxin Zhou, Xiuling Beijing Union Univ Beijing Key Lab Informat Serv Engn Beijing Peoples R China Beijing City Univ Dept Technol & Ind Dev Beijing Peoples R China
Sparse representation classification (SRC) is a new framework for classification and has been successfully applied to face recognition. However, in some cases it is not well to represent the test sample accurately, wh... 详细信息
来源: 评论
Predictor Discovery for Early-Late Indian Summer Monsoon Using stacked autoencoder
Predictor Discovery for Early-Late Indian Summer Monsoon Usi...
收藏 引用
16th Annual International Conference on Computational Science (ICCS)
作者: Saha, Moumita Mitra, Pabitra Nanjundiah, Ravi S. Indian Inst Technol Kharagpur Dept Comp Sci & Engn Kharagpur W Bengal India Indian Inst Sci Div Ctr Climate Change Ctr Atmospher & Ocean Sci Bangalore Karnataka India
Indian summer monsoon has distinct behaviors in its early and late phase. The influencing climatic factors are also different. In this work we aim to predict the national rainfall in these phases. The predictors used ... 详细信息
来源: 评论
Plant classification based on stacked autoencoder  2
Plant classification based on Stacked Autoencoder
收藏 引用
2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC 2017)
作者: Meng-Meng Yang Arifur Nayeem Ling-Ling Shen School of Computer Science and Technology Nanjing Normal University Saidpur Government Technical School And College School of Overseas Education Nanjing University Of Post And Telecommunications School of Business of Nanjing Normal University
With the development of rapid technology, the similarity between plants is increasing, which will enhance the classified workload of botanists. Therefore, it is urge to find a quick automatic classification method. In... 详细信息
来源: 评论
EXPERIMENTAL STUDY ON stacked autoencoder ON INSUFFICIENT TRAINING SAMPLES
EXPERIMENTAL STUDY ON STACKED AUTOENCODER ON INSUFFICIENT TR...
收藏 引用
International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)
作者: Xue, Jin Chan, Patrick P. K. Hu, Xian South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China
Many studies have shown that deep learning outperforms traditional machine learning methods in many applications. To prevent overfitting, a huge number of training samples is usually required in training process of de... 详细信息
来源: 评论