咨询与建议

限定检索结果

文献类型

  • 227 篇 期刊文献
  • 93 篇 会议
  • 4 篇 学位论文

馆藏范围

  • 324 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 298 篇 工学
    • 175 篇 计算机科学与技术...
    • 99 篇 电气工程
    • 47 篇 控制科学与工程
    • 43 篇 信息与通信工程
    • 31 篇 仪器科学与技术
    • 26 篇 软件工程
    • 14 篇 机械工程
    • 14 篇 化学工程与技术
    • 13 篇 环境科学与工程(可...
    • 11 篇 测绘科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 7 篇 石油与天然气工程
    • 7 篇 生物医学工程(可授...
    • 5 篇 交通运输工程
    • 4 篇 动力工程及工程热...
    • 4 篇 网络空间安全
    • 3 篇 土木工程
  • 63 篇 理学
    • 19 篇 生物学
    • 16 篇 数学
    • 13 篇 地球物理学
    • 12 篇 物理学
    • 11 篇 化学
    • 6 篇 系统科学
    • 3 篇 统计学(可授理学、...
  • 48 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 24 篇 医学
    • 16 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 5 篇 农学
  • 4 篇 经济学
    • 3 篇 理论经济学
  • 1 篇 法学

主题

  • 324 篇 stacked autoenco...
  • 92 篇 deep learning
  • 27 篇 feature extracti...
  • 22 篇 deep neural netw...
  • 16 篇 classification
  • 13 篇 convolutional ne...
  • 10 篇 fault diagnosis
  • 10 篇 fault detection
  • 9 篇 autoencoder
  • 9 篇 feature learning
  • 8 篇 anomaly detectio...
  • 8 篇 intrusion detect...
  • 8 篇 machine learning
  • 7 篇 long short-term ...
  • 7 篇 soft sensor
  • 6 篇 dimensionality r...
  • 6 篇 neural network
  • 6 篇 extreme learning...
  • 5 篇 deep neural netw...
  • 5 篇 semi-supervised ...

机构

  • 6 篇 cent south univ ...
  • 5 篇 east china univ ...
  • 4 篇 east china univ ...
  • 4 篇 nanjing univ aer...
  • 3 篇 east china univ ...
  • 3 篇 south china univ...
  • 2 篇 shanghai univ en...
  • 2 篇 kunming univ sci...
  • 2 篇 guilin univ elec...
  • 2 篇 kunming univ sci...
  • 2 篇 beijing univ tec...
  • 2 篇 fudan univ sch m...
  • 2 篇 beijing inst rem...
  • 2 篇 department of co...
  • 2 篇 univ ulsan dept ...
  • 2 篇 northeastern uni...
  • 2 篇 north china univ...
  • 2 篇 china univ min &...
  • 2 篇 tongji univ shan...
  • 2 篇 sichuan univ col...

作者

  • 9 篇 yan xuefeng
  • 6 篇 wang kai
  • 4 篇 wang yalin
  • 4 篇 badem hasan
  • 4 篇 basturk alper
  • 4 篇 caliskan abdulla...
  • 4 篇 jiang qingchao
  • 4 篇 yu jianbo
  • 4 篇 yuksel mehmet em...
  • 3 篇 li shunming
  • 3 篇 mitra pabitra
  • 3 篇 nanjundiah ravi ...
  • 3 篇 yuan xiaofeng
  • 3 篇 saha moumita
  • 3 篇 qiao weibiao
  • 3 篇 kai wang
  • 3 篇 aminanto muhamad...
  • 3 篇 yang chunhua
  • 2 篇 huang yuchang
  • 2 篇 han guoqiang

语言

  • 308 篇 英文
  • 14 篇 其他
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=Stacked autoencoder"
324 条 记 录,以下是71-80 订阅
排序:
Detection of Application Layer DDoS Attack by Feature Learning Using stacked autoencoder
Detection of Application Layer DDoS Attack by Feature Learni...
收藏 引用
International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT)
作者: Yadav, Satyajit Subramanian, Selvakumar Natl Inst Technol Dept Comp Sci & Engn Tiruchirappalli Tamil Nadu India
An Application Layer Distributed Denial of Service Attack (DDoS) is one of the biggest concerns for web security. Many detection methods are designed to mitigate DDoS attack based on IP and TCP layer instead of the Ap... 详细信息
来源: 评论
Printed Odia Numeral Recognition Using stacked autoencoder  9th
Printed Odia Numeral Recognition Using Stacked Autoencoder
收藏 引用
9th International Conference of Information and Communication Technology [ICICT]
作者: Satpathy, Subhashree Nayak, Ajit Ku. Nayak, Mamata Patnaik, Srikanta Siksha O Anusandhan Univ Dept CSE Bhubaneswar 751030 India Siksha O Anusandhan Univ Dept CSIT Bhubaneswar 751030 India
Automatic recognition of both printed and handwritten characters is the most progressive research area since last few periods. The printed character recognition rate still desires concentration of researchers because ... 详细信息
来源: 评论
Deep stacked autoencoder-Based Automatic Emotion Recognition Using an Efficient Hybrid Local Texture Descriptor
收藏 引用
JOURNAL OF INFORMATION TECHNOLOGY RESEARCH 2022年 第1期15卷 1-26页
作者: Pitchaiyan, Shanthi Savarimuthu, Nickolas Natl Inst Technol Dept Comp Applicat Tiruchirappalli India
Extracting an effective facial feature representation is the critical task for an automatic expression recognition system. Local binary pattern (LBP) is known to be a popular texture feature for facial expression reco... 详细信息
来源: 评论
A Home Sleep Apnea State Monitoring System using a stacked autoencoder  18
A Home Sleep Apnea State Monitoring System using a Stacked A...
收藏 引用
18th IEEE Sensors Conference
作者: Takao, Ikuya Nishio, Keita Kaburagi, Takashi Kumagai, Satoshi Matsumoto, Toshiyuki Kurihara, Yosuke Aoyama Gakuin Univ Dept Ind & Syst Engn Sagamihara Kanagawa Japan Int Cristian Univ Dept Nat Sci Mitaka Tokyo Japan
Ischemic heart disease is one of the most common causes of death in the world. Recent studies show that it may be caused by sleep apnea, or disordered breathing during sleep;however, sleep apnea lacks subjective sympt... 详细信息
来源: 评论
Bio-Mechanical Distracted Driver Recognition Based on stacked autoencoder and Convolutional Neural Network  2
Bio-Mechanical Distracted Driver Recognition Based on Stacke...
收藏 引用
2nd IEEE International Conference on Information Communication and Signal Processing (ICICSP)
作者: Assefa, Addis Abebe Tian Wenhong UESTC Sch Informat & Software Engn Chengdu Peoples R China
in this paper, we consider a problem of a biomechanical distraction of a driver;mostly it is related with hands secondary action while driving. Dealing with this type of distraction is crucial because the main causes ... 详细信息
来源: 评论
Classification of Imbalanced Bioassay Data with Features Learned Using stacked autoencoder  15
Classification of Imbalanced Bioassay Data with Features Lea...
收藏 引用
15th International Conference on Machine Vision (ICMV)
作者: Shah, Jeni Joshi, Manjunath Dhirubhai Ambani Inst Informat & Commun Technol Gandhinagar India
Bioassay data classification is an important task in drug discovery. However, the data used in classification is highly imbalanced, leading to inaccuracies in classification for the minority class. We propose a novel ... 详细信息
来源: 评论
A stacked autoencoder for operation mode classification of complicated industrial process
A stacked autoencoder for operation mode classification of c...
收藏 引用
Chinese Automation Congress (CAC)
作者: Zhou, Longfei Huang, Keke Yang, Chunhua Chen, Xiaofang Xie, Yongfang Yue, Weichao Cent South Univ Sch Software Changsha Hunan Peoples R China Cent South Univ Sch Informat Sci & Engn Changsha Hunan Peoples R China
In this paper, we propose a novel stacked autoencoder (SAE) based operation mode classification method for the complicated industrial process. In detail, we first add the sparse and regularization constraints into SAE... 详细信息
来源: 评论
Electricity price forecast based on stacked autoencoder in spot market environment  9
Electricity price forecast based on stacked autoencoder in s...
收藏 引用
9th International Conference on Power and Energy Systems (ICPES)
作者: Zou, Ya Tu, Mengfu Teng, Xianliang Cao, Rongzhang Xie, Wei NARI Technol DEV CO LTD Power Grid Dispatching & Control Technol Branch C Nanjing Peoples R China NARI Technol Dev CO LTD NARI Res Inst Nanjing Peoples R China
Artificial neural network method is a common method for short-term electricity price forecasting. However, when the amount of input and output data is large, the training speed will be slow, and it is easy to fall int... 详细信息
来源: 评论
Classification of Silent Speech in English and Bengali Languages Using stacked autoencoder
收藏 引用
SN Computer Science 2022年 第5期3卷 389页
作者: Ghosh, Rajdeep Sinha, Nidul Phadikar, Souvik School of Computing Science and Engineering VIT Bhopal University Madhya Pradesh Kotri Kalan 466114 India Department of Electrical Engineering NIT Silchar Assam Silchar 788010 India
The purpose of a brain–computer interface (BCI) is to enhance or support the normal functions of disabled people, and as such, BCIs have been utilized for a variety of applications, such as prostheses and identificat... 详细信息
来源: 评论
Deep Residual Learning-based Reconstruction of stacked autoencoder Representation  25
Deep Residual Learning-based Reconstruction of Stacked Autoe...
收藏 引用
25th IEEE International Conference on Electronics, Circuits and Systems (ICECS)
作者: Li, Honggui Trocan, Maria Yangzhou Univ Phys Coll Sci & Technol Yangzhou Jiangsu Peoples R China Inst Super Elect Paris LISITE Res Lab Paris France
stacked autoencoder (SAE) can efficiently represent high dimensional data with low dimensional features via minimizing a reconstruction error. However, the decoder of SAE cannot achieve lossless recovery of original d... 详细信息
来源: 评论