咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 55 篇 计算机科学与技术...
    • 38 篇 电气工程
    • 17 篇 控制科学与工程
    • 15 篇 信息与通信工程
    • 12 篇 仪器科学与技术
    • 10 篇 软件工程
    • 6 篇 机械工程
    • 5 篇 动力工程及工程热...
    • 5 篇 测绘科学与技术
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 石油与天然气工程
    • 3 篇 光学工程
    • 3 篇 生物工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 食品科学与工程(可...
  • 23 篇 理学
    • 8 篇 生物学
    • 6 篇 物理学
    • 4 篇 系统科学
    • 3 篇 数学
    • 3 篇 化学
    • 3 篇 地球物理学
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 医学
    • 11 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 2 篇 中西医结合
    • 2 篇 特种医学
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 农学

主题

  • 114 篇 stacked denoisin...
  • 39 篇 deep learning
  • 9 篇 feature extracti...
  • 8 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 5 篇 noise reduction
  • 5 篇 deep neural netw...
  • 5 篇 convolutional ne...
  • 4 篇 collaborative fi...
  • 4 篇 ensemble learnin...
  • 4 篇 recommender syst...
  • 4 篇 extreme learning...
  • 3 篇 compressive sens...
  • 3 篇 transfer learnin...
  • 3 篇 indoor positioni...
  • 3 篇 neural networks
  • 3 篇 cognitive worklo...
  • 3 篇 unsupervised fea...
  • 3 篇 gated recurrent ...
  • 3 篇 feature learning

机构

  • 3 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 jiangsu univ sch...
  • 3 篇 oslo metropolita...
  • 2 篇 tongji univ sch ...
  • 2 篇 tsinghua univ sh...
  • 2 篇 natl engn res ct...
  • 2 篇 china univ geosc...
  • 2 篇 cent south univ ...
  • 2 篇 harbin univ sci ...
  • 2 篇 guangdong univ t...
  • 1 篇 hefei univ techn...
  • 1 篇 newcastle univ s...
  • 1 篇 hangzhou appl ac...
  • 1 篇 east china univ ...
  • 1 篇 johns hopkins un...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ ulsan sch e...
  • 1 篇 dalian univ tech...
  • 1 篇 xi an jiao tong ...

作者

  • 5 篇 yu jianbo
  • 3 篇 zhou xin
  • 3 篇 xu fan
  • 3 篇 sun jun
  • 3 篇 zhang jianhua
  • 3 篇 yin zhong
  • 2 篇 zhang lei
  • 2 篇 zhao chunjiang
  • 2 篇 xu min
  • 2 篇 wang yongxiong
  • 2 篇 dai penglin
  • 2 篇 wang shijin
  • 2 篇 yang fang
  • 2 篇 liu yutian
  • 2 篇 zheng zhanpeng
  • 2 篇 yu jun
  • 2 篇 xu lin
  • 2 篇 shi lei
  • 2 篇 wang cong
  • 2 篇 wang jianxin

语言

  • 111 篇 英文
  • 2 篇 其他
  • 2 篇 中文
检索条件"主题词=Stacked denoising autoencoder"
114 条 记 录,以下是71-80 订阅
排序:
Transformer Fault Diagnosis Using Self-Powered RFID Sensor and Deep Learning Approach
收藏 引用
IEEE SENSORS JOURNAL 2018年 第15期18卷 6399-6411页
作者: Wang, Tao He, Yigang Li, Bing Shi, Tiancheng Hefei Univ Technol Sch Elect Engn & Automat Hefei 230009 Anhui Peoples R China Wuhan Univ Sch Elect Engn Wuhan 430072 Hubei Peoples R China
This paper introduces a novel fault diagnosis approach for transformer based on self-powered radio-frequency identification (RFID) sensor and deep learning technique. The exploited RFID sensor tag with functionalities... 详细信息
来源: 评论
Image-based mains signal disaggregation and load recognition
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2021年 第2期7卷 901-927页
作者: Matindife, Liston Sun, Yanxia Wang, Zenghui Univ Johannesburg Dept Elect & Elect Engn Sci ZA-2006 Auckland Pk South Africa Univ South Africa Dept Elect & Min Engn ZA-1710 Florida South Africa
The mains signal is a complex fusion of various electrical equipment load signals in a building. In the non-intrusive load monitoring recognition, our main aim is to be able to extract as much load features as possibl... 详细信息
来源: 评论
A Network Attack Detection Method Using SDA and Deep Neural Network Based on Internet of Things
收藏 引用
INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS 2020年 第2期27卷 209-214页
作者: Li, Jingwei Sun, Bo Henan Inst Technol Coll Comp Sci & Technol Xinxiang 453002 Henan Peoples R China
Aiming at the deficiency of network attack detection, a network attack detection method based on deep neural network is proposed. Firstly, the deep neural network technology is used to study the self-adaptive identifi... 详细信息
来源: 评论
Query-by-example surgical activity detection
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY 2016年 第6期11卷 987-996页
作者: Gao, Yixin Vedula, S. Swaroop Lee, Gyusung I. Lee, Mija R. Khudanpur, Sanjeev Hager, Gregory D. Johns Hopkins Univ Dept Comp Sci Whiting Sch Engn Baltimore MD 21218 USA Johns Hopkins Univ Sch Med Dept Surg Baltimore MD 21287 USA Johns Hopkins Univ Dept Elect & Comp Engn Whiting Sch Engn Baltimore MD 21218 USA
Easy acquisition of surgical data opens many opportunities to automate skill evaluation and teaching. Current technology to search tool motion data for surgical activity segments of interest is limited by the need for... 详细信息
来源: 评论
Semisupervised learning using denoising autoencoders for brain lesion detection and segmentation
收藏 引用
JOURNAL OF MEDICAL IMAGING 2017年 第4期4卷 041311页
作者: Alex, Varghese Vaidhya, Kiran Thirunavukkarasu, Subramaniam Kesavadas, Chandrasekharan Krishnamurthi, Ganapathy Indian Inst Technol Madras Dept Engn Design Madras Tamil Nadu India Sree Chitra Tirunal Inst Med Sci & Technol Dept Radiol Trivandrum Kerala India
The work explores the use of denoising autoencoders (DAEs) for brain lesion detection, segmentation, and false-positive reduction. stacked denoising autoencoders (SDAEs) were pretrained using a large number of unlabel... 详细信息
来源: 评论
A deep learning ensemble approach for crude oil price forecasting
收藏 引用
ENERGY ECONOMICS 2017年 66卷 9-16页
作者: Zhao, Yang Li, Jianping Yu, Lean Chinese Acad Sci Inst Policy & Management Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Beijing Univ Chem Technol Sch Econ & Management Beijing Peoples R China
As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is propose... 详细信息
来源: 评论
Attention neural collaboration filtering based on GRU for recommender systems
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2021年 第3期7卷 1367-1379页
作者: Xia, Hongbin Luo, Yang Liu, Yuan Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi Jiangsu Peoples R China Jiangsu Key Lab Media Design & Software Technol Wuxi Jiangsu Peoples R China
The collaborative filtering method is widely used in the traditional recommendation system. The collaborative filtering method based on matrix factorization treats the user's preference for the item as a linear co... 详细信息
来源: 评论
A Comparative Study of Object Tracking using CNN and SDAE
A Comparative Study of Object Tracking using CNN and SDAE
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Yang, Wei Wang, Wei Gao, Yang Jin, Zhanpeng SUNY Binghamton Dept Elect & Comp Engn Binghamton NY 13902 USA Univ Buffalo SUNY Dept Comp Sci & Engn New York NY 14260 USA
Object tracking which refers to automatic estimation of the trajectory is a challenging problem. To track the object robustly and efficiently, we explored an autonomous object tracking methodological framework that ad... 详细信息
来源: 评论
A multi-label Hyperspectral image classification method with deep learning features  16
A multi-label Hyperspectral image classification method with...
收藏 引用
8th International Conference on Internet Multimedia Computing and Service (ICIMCS)
作者: Wang, Cong Zhang, Peng Zhang, Yanning Zhang, Lei Wei, Wei Northwestern Polytech Univ Sch Comp Sci & Technol Xian 710072 Peoples R China
Hyperspectral image (HSI) classification is an important application of HSI analysis, which aims at assigning a class label to each pixel. However, considering that mixed pixels commonly exist in HSI, assigning a uniq... 详细信息
来源: 评论
Deep Feature Learning for Pulmonary Nodule Classification in a Lung CT  4
Deep Feature Learning for Pulmonary Nodule Classification in...
收藏 引用
4th International Winter Conference on Brain-Computer Interface (BCI)
作者: Kim, Bum-Chae Sung, Yu Sub Suk, Heung-Il Korea Univ Dept Brain & Cognit Engn Seoul South Korea Asan Med Ctr Dept Radiol Biomed Imaging Infrastruct Seoul South Korea
In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging featu... 详细信息
来源: 评论