咨询与建议

限定检索结果

文献类型

  • 52 篇 期刊文献
  • 25 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 78 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 69 篇 工学
    • 28 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 11 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 8 篇 仪器科学与技术
    • 7 篇 化学工程与技术
    • 7 篇 生物医学工程(可授...
    • 6 篇 软件工程
    • 5 篇 测绘科学与技术
    • 4 篇 机械工程
    • 4 篇 光学工程
    • 3 篇 动力工程及工程热...
    • 3 篇 石油与天然气工程
    • 3 篇 环境科学与工程(可...
    • 2 篇 船舶与海洋工程
    • 2 篇 食品科学与工程(可...
  • 17 篇 理学
    • 9 篇 物理学
    • 4 篇 化学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 系统科学
  • 16 篇 医学
    • 10 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 2 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 8 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 2 篇 公共管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 78 篇 stacked sparse a...
  • 28 篇 deep learning
  • 6 篇 feature extracti...
  • 4 篇 fault diagnosis
  • 3 篇 support vector m...
  • 3 篇 semi-supervised ...
  • 3 篇 optimization
  • 3 篇 deep neural netw...
  • 3 篇 classification
  • 3 篇 feature selectio...
  • 2 篇 image fusion
  • 2 篇 intrusion detect...
  • 2 篇 deep features
  • 2 篇 neural nets
  • 2 篇 anomaly detectio...
  • 2 篇 feature represen...
  • 2 篇 softmax
  • 2 篇 epilepsy
  • 2 篇 iot
  • 2 篇 remaining useful...

机构

  • 3 篇 harbin engn univ...
  • 2 篇 german aerosp ct...
  • 2 篇 chongqing jiaoto...
  • 2 篇 univ tehran fac ...
  • 2 篇 tsinghua univ de...
  • 1 篇 fed univ rio gra...
  • 1 篇 college of elect...
  • 1 篇 hubei key labora...
  • 1 篇 cochin univ sci ...
  • 1 篇 hangzhou dianzi ...
  • 1 篇 gansu rd & bridg...
  • 1 篇 washington univ ...
  • 1 篇 chongqing univ s...
  • 1 篇 northeastern uni...
  • 1 篇 kunming univ sci...
  • 1 篇 sejong univ coll...
  • 1 篇 state grid shand...
  • 1 篇 jiangsu canc hos...
  • 1 篇 iit madras dept ...
  • 1 篇 beijing inst tec...

作者

  • 3 篇 zhao chunhui
  • 3 篇 wan xiaoqing
  • 2 篇 abdi ghasem
  • 2 篇 hu yuanyuan
  • 2 篇 yan yiming
  • 2 篇 chen lili
  • 2 篇 samadzadegan far...
  • 2 篇 fan jianchao
  • 2 篇 jia wenjuan
  • 2 篇 reinartz peter
  • 2 篇 wang shui-hua
  • 1 篇 aouedi ons
  • 1 篇 ye yuan
  • 1 篇 yu-chieh lin
  • 1 篇 syed furqan qadr...
  • 1 篇 bukhari syed ahm...
  • 1 篇 li yangjin
  • 1 篇 li jinguo
  • 1 篇 altaye mekibib
  • 1 篇 jin miao

语言

  • 70 篇 英文
  • 4 篇 其他
  • 1 篇 法文
  • 1 篇 土耳其文
  • 1 篇 中文
检索条件"主题词=Stacked sparse autoencoder"
78 条 记 录,以下是21-30 订阅
stacked sparse autoencoder based Automatic Detection of Ripples and Fast Ripples in Epilepsy
Stacked Sparse Autoencoder based Automatic Detection of Ripp...
收藏 引用
第三十九届中国控制会议
作者: Hongzhen Qin Min Wu Xiongbo Wan Yuxiao Du School of Automation China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems School of Automation Guangdong University of Technology
High frequency oscillations(HFOs) have been acknowledged as a putative biomarker of epileptic seizure onset zones(SOZs). Accurate detection of HFOs is significant for the preoperative localization of epileptic SOZs. I... 详细信息
来源: 评论
Deep Neural Network Hardware Implementation Based on stacked sparse autoencoder
收藏 引用
IEEE ACCESS 2019年 7卷 40674-40694页
作者: Coutinho, Maria G. F. Torquato, Matheus F. Fernandes, Marcelo A. C. Fed Univ Rio Grande do Norte UFRN Dept Comp Engn & Automat BR-59078970 Natal RN Brazil Swansea Univ Coll Engn Swansea SA2 8PP W Glam Wales
Deep learning techniques have been gaining prominence in the research world in the past years;however, the deep learning algorithms have high computational cost, making them hard to be used to several commercial appli... 详细信息
来源: 评论
Prediction of the chlorophyll content in pomegranate leaves based on digital image processing technology and stacked sparse autoencoder
收藏 引用
INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019年 第1期22卷 1720-1732页
作者: Peng, Yingshu Wang, Yi Nanjing Forestry Univ Coll Forestry Nanjing 210037 Peoples R China Jiangsu Wiscom Technol Co Ltd Nanjing Peoples R China
Most leaf chlorophyll predictions based on digital image analyzes are modeled by manual extraction features and traditional machine learning methods. In this study, a series of image preprocessing operations, such as ... 详细信息
来源: 评论
Five-category classification of pathological brain images based on deep stacked sparse autoencoder
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2019年 第4期78卷 4045-4064页
作者: Jia, Wenjuan Muhammad, Khan Wang, Shui-Hua Zhang, Yu-Dong Nanjing Normal Univ Sch Comp Sci & Engn 1 Wenyuan Nanjing 210023 Jiangsu Peoples R China Sejong Univ Coll Software Convergence Dept Software Intelligent Media Lab Seoul South Korea Univ Leicester Dept Informat Leicester LE1 7RH Leics England
Magnetic resonance imaging (MRI) is employed in medical treatment broadly, due to the quick development of computer technology. It is beneficial to classify the pathological brain images into healthy or other differen... 详细信息
来源: 评论
PolSAR image classification based on multi-scale stacked sparse autoencoder
收藏 引用
NEUROCOMPUTING 2019年 351卷 167-179页
作者: Zhang, Lu Jiao, Licheng Ma, Wenping Duan, Yiping Zhang, Dan Xidian Univ Int Res Ctr Intelligent Percept & Computat Joint Int Res Lab Intelligent Percept & Computat Minist EducKey Lab Intelligent Percept & Image U Xian 710071 Shaanxi Peoples R China Tsinghua Univ Dept Elect Engn Beijing Peoples R China
Recently, many deep learning methods are applied with the spatial information to learn features for polarimetric synthetic aperture radar (PolSAR) image classification. However, without considering the multi-scale inf... 详细信息
来源: 评论
Research on Visual Speech Recognition Based on Local Binary Pattern and stacked sparse autoencoder  1st
Research on Visual Speech Recognition Based on Local Binary ...
收藏 引用
1st International Conference on Human Systems Engineering and Design (IHSED) - Future Trends and Applications
作者: Lu, Yuanyao Gu, Ke He, Shan North China Univ Technol Sch Elect & Informat Engn Beijing 100144 Peoples R China
Lip feature extraction from human mouth image plays an essential role in visual speech recognition applications. This paper presents a lip feature extraction algorithm based on Local Binary Patterns (LBP) and stacked ... 详细信息
来源: 评论
PolSAR Marine Aquaculture Detection Based on Nonlocal stacked sparse autoencoder  16th
PolSAR Marine Aquaculture Detection Based on Nonlocal Stacke...
收藏 引用
16th International Symposium on Neural Networks (ISNN)
作者: Fan, Jianchao Liu, Xiaoxin Hu, Yuanyuan Han, Min Natl Marine Environm Monitoring Ctr Dept Ocean Remote Sensing Dalian 116023 Liaoning Peoples R China Washington Univ Comp Sci & Engn St Louis MO 63130 USA Dalian Univ Technol Fac Elect Informat & Elect Engn Dalian 116024 Liaoning Peoples R China
Marine aquaculture plays an important role in marine economic, which distributes widely around the coast. Using satellite remote sensing monitoring, it can achieve large scale dynamic monitoring. As a classic model of... 详细信息
来源: 评论
Vertebrae Segmentation via stacked sparse autoencoder from Computed Tomography Images  11
Vertebrae Segmentation via Stacked Sparse Autoencoder from C...
收藏 引用
11th International Conference on Digital Image Processing (ICDIP)
作者: Qadri, Syed Furqan Zhao, Zhiqi Ai, Danni Ahmad, Mubashir Wang, Yongtian Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China Beijing Inst Technol Sch Opt & Photon Beijing Engn Res Ctr Mixed Real & Adv Display Beijing 100081 Peoples R China AICFVE Beijing Film Acad 4 Xitucheng Rd Beijing 100088 Peoples R China
An accurate vertebrae segmentation in the spine is an essential pre-requisite in many applications of image-based spine assessment, surgical planning, clinical diagnostic treatment, and biomechanical modeling. In this... 详细信息
来源: 评论
Remaining Useful Life Prediction Based on stacked sparse autoencoder and Echo State Network
Remaining Useful Life Prediction Based on Stacked Sparse Aut...
收藏 引用
第三十九届中国控制会议
作者: Yinghua Yang Dandan Yao Xiaozhi Liu College of Information Science and Engineering Northeastern University
Nowadays, the prediction of industry components’ remaining useful life(RUL) has already become a hot topic. In this paper, a RUL prediction method based on stacked sparse autoencoder(SAE) and echo state network(... 详细信息
来源: 评论
Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder
收藏 引用
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS 2018年 69卷 60-68页
作者: Abraham, Bejoy Nair, Madhu S. Univ Kerala Dept Comp Sci Thiruvananthapuram 695581 Kerala India Cochin Univ Sci & Technol Dept Comp Sci Kochi 682022 Kerala India
A novel method to determine the Grade Group (GG) in prostate cancer (PCa) using multi-parametric magnetic resonance imaging (mpMRI) biomarkers is investigated in this paper. In this method, highlevel features are extr... 详细信息
来源: 评论