This book discusses modelling and analysis of Magnetic Resonance Imaging (MRI) data of the human brain. For the data processing pipelines we rely on R, the software environment for statistical computing and graphics. ...
详细信息
ISBN:
(数字)9783031389498
ISBN:
(纸本)9783031389481
This book discusses modelling and analysis of Magnetic Resonance Imaging (MRI) data of the human brain. For the data processing pipelines we rely on R, the software environment for statistical computing and graphics. The book is intended for readers from two communities: Statisticians, who are interested in neuroimaging and look for an introduction to the acquired data and typical scientific problems in the field and neuroimaging students, who want to learn about the statistical modeling and analysis of MRI data. Being a practical introduction, the book focuses on those problems in data analysis for which implementations within R are available. By providing full worked-out examples the book thus serves as a tutorial for MRI analysis with R, from which the reader can derive its own data processing scripts.;The book starts with a short introduction into MRI. The next chapter considers the process of reading and writing common neuroimaging data formats to and from the Rsession. The main chapters then cover four common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, Multi-Parameter Mapping and Inversion Recovery MRI. The book concludes with extended Appendices on details of the utilize non-parametric statistics and on resources for R and MRI data.;The book also addresses the issues of reproducibility and topics like data organization and description, open data and open science. It completely relies on a dynamic report generation with knitr: The books R-code and intermediate results are available for reproducibility of the examples.
Signal processing may broadly be considered to involve the recovery of information from physical observations. The received signal is usually disturbed by thermal, electrical, atmospheric or intentional interferences....
详细信息
ISBN:
(数字)9788132206286
Signal processing may broadly be considered to involve the recovery of information from physical observations. The received signal is usually disturbed by thermal, electrical, atmospheric or intentional interferences. Due to the random nature of the signal, statistical techniques play an important role in analyzing the signal. statistics is also used in the formulation of the appropriate models to describe the behavior of the system, the development of appropriate techniques for estimation of model parameters and the assessment of the model performances. Statistical signal processing basically refers to the analysis of random signals using appropriate statistical techniques. The main aim of this book is to introduce different signal processing models which have been used in analyzing periodic data, and different statistical and computational issues involved in solving them. We discuss in detail the sinusoidal frequency model which has been used extensively in analyzing periodic data occuring in various fields. We have tried to introduce different associated models and higher dimensional statistical signal processing models which have been further discussed in the literature. Different real data sets have been analyzed to illustrate how different models can be used in practice. Several open problems have been indicated for future research.
The development of software system with acceptable level of reliability and quality within available time frame and budget becomes a challenging objective. This objective could be achieved to some extent through early...
详细信息
ISBN:
(数字)9788132211761
ISBN:
(纸本)9788132211754;9788132217428
The development of software system with acceptable level of reliability and quality within available time frame and budget becomes a challenging objective. This objective could be achieved to some extent through early prediction of number of faults present in the software, which reduces the cost of development as it provides an opportunity to make early corrections during development process. The book presents an early software reliability prediction model that will help to grow the reliability of the software systems by monitoring it in each development phase, i.e. from requirement phase to testing phase. Different approaches are discussed in this book to tackle this challenging issue. An important approach presented in this book is a model to classify the modules into two categories (a) fault-prone and (b) not fault-prone. The methods presented in this book for assessing expected number of faults present in the software, assessing expected number of faults present at the end of eachphase and classification of software modules in fault-prone or no fault-prone category are easy to understand, develop and use for any practitioner. The practitioners are expected to gain more information about their development process and product reliability, which can help to optimize the resources used.
暂无评论