咨询与建议

限定检索结果

文献类型

  • 154 篇 期刊文献
  • 31 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 187 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 119 篇 工学
    • 47 篇 计算机科学与技术...
    • 43 篇 电气工程
    • 15 篇 信息与通信工程
    • 12 篇 电子科学与技术(可...
    • 9 篇 控制科学与工程
    • 9 篇 软件工程
    • 7 篇 化学工程与技术
    • 7 篇 石油与天然气工程
    • 6 篇 机械工程
    • 6 篇 动力工程及工程热...
    • 6 篇 环境科学与工程(可...
    • 5 篇 力学(可授工学、理...
    • 4 篇 光学工程
    • 4 篇 材料科学与工程(可...
    • 2 篇 仪器科学与技术
    • 2 篇 水利工程
    • 2 篇 船舶与海洋工程
    • 2 篇 生物医学工程(可授...
  • 105 篇 理学
    • 65 篇 数学
    • 27 篇 物理学
    • 26 篇 统计学(可授理学、...
    • 8 篇 生物学
    • 4 篇 化学
  • 25 篇 管理学
    • 23 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 8 篇 经济学
    • 7 篇 应用经济学
    • 2 篇 理论经济学
  • 8 篇 医学
    • 6 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 2 篇 法学
  • 2 篇 农学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 187 篇 stochastic algor...
  • 20 篇 global optimizat...
  • 10 篇 optimization
  • 7 篇 variance reducti...
  • 6 篇 simulation
  • 6 篇 heuristic
  • 6 篇 primal-dual algo...
  • 6 篇 inverse problem
  • 5 篇 block-coordinate...
  • 5 篇 convex optimizat...
  • 5 篇 simulated anneal...
  • 5 篇 continuous optim...
  • 5 篇 genetic algorith...
  • 5 篇 nonlinear progra...
  • 4 篇 stochastic local...
  • 4 篇 nonsmooth optimi...
  • 4 篇 central limit th...
  • 4 篇 artificial intel...
  • 4 篇 proximity operat...
  • 4 篇 maximum likeliho...

机构

  • 5 篇 at&t labs res al...
  • 5 篇 univ florida dep...
  • 4 篇 zhejiang univ co...
  • 4 篇 rensselaer polyt...
  • 3 篇 univ chinese aca...
  • 3 篇 chinese acad sci...
  • 3 篇 univ connecticut...
  • 2 篇 univ penn dept r...
  • 2 篇 hong kong polyte...
  • 2 篇 hong kong polyte...
  • 2 篇 peking univ sch ...
  • 2 篇 mit electromagne...
  • 2 篇 univ paris 06 pr...
  • 2 篇 southwest minzu ...
  • 2 篇 univ tokyo dept ...
  • 2 篇 china unicom fuj...
  • 2 篇 north carolina s...
  • 2 篇 natl tech univ a...
  • 2 篇 heriot watt univ...
  • 2 篇 univ fed pernamb...

作者

  • 6 篇 yang sy
  • 6 篇 pesquet jean-chr...
  • 6 篇 ni gz
  • 5 篇 combettes patric...
  • 4 篇 chen xd
  • 3 篇 tong qianqian
  • 3 篇 liang guannan
  • 3 篇 ye xinggui
  • 3 篇 bi jinbo
  • 3 篇 pardalos p. m.
  • 3 篇 wang peng
  • 3 篇 resende m. g. c.
  • 3 篇 fort jc
  • 2 篇 jiang bochuan
  • 2 篇 lafon pascal
  • 2 篇 an siguang
  • 2 篇 celeux gilles
  • 2 篇 resende mauricio...
  • 2 篇 subbey s
  • 2 篇 chatterjee k

语言

  • 170 篇 英文
  • 17 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=Stochastic Algorithm"
187 条 记 录,以下是11-20 订阅
排序:
Simulation of anaerobic digestion processes using stochastic algorithm
收藏 引用
JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING 2014年 第1期12卷 1-8页
作者: Palanichamy, Jegathambal Palani, Sundarambal Karunya Univ Water Inst Coimbatore 641114 Tamil Nadu India Natl Univ Singapore Trop Marine Sci Inst Singapore 119227 Singapore
Background: The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic ... 详细信息
来源: 评论
IQ-TREE: A Fast and Effective stochastic algorithm for Estimating Maximum-Likelihood Phylogenies
收藏 引用
MOLECULAR BIOLOGY AND EVOLUTION 2015年 第1期32卷 268-274页
作者: Lam-Tung Nguyen Schmidt, Heiko A. von Haeseler, Arndt Bui Quang Minh Med Univ Vienna Univ Vienna Max F Perutz Labs Ctr Integrat Bioinformat Vienna Vienna Austria Univ Vienna Fac Comp Sci Vienna Austria
Large phylogenomics data sets require fast tree inference methods, especially for maximum-likelihood (ML) phylogenies. Fast programs exist, but due to inherent heuristics to find optimal trees, it is not clear whether... 详细信息
来源: 评论
Parsimonious modelling allows generation of the dendrograms of primate striatal medium spiny and pallidal type II neurons using a stochastic algorithm
收藏 引用
BRAIN RESEARCH 2008年 1238卷 288-300页
作者: Mouchet, Patrick Yelnik, Jerome Univ Joseph Fourier Site Sante Grenoble Inst Neurosci F-38042 Grenoble 9 France Hop La Pitie Salpetriere INSERM U679 Paris France
Data from quantitative three-dimensional analysis of primate striatal medium spiny neurons (MSNs) and pallidal type I and type II neurons were used to search for possible rules underlying the dendritic architecture of... 详细信息
来源: 评论
Distributed stochastic algorithm for Global Optimization in Networked System
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 2018年 第3期179卷 1001-1007页
作者: Wang, Shengnan Li, Chunguang Zhejiang Univ Coll Informat Sci & Elect Engn Zhejiang Prov Key Lab Informat Proc Commun & Netw Hangzhou 310027 Zhejiang Peoples R China
This paper studies the distributed optimization problem, whose aim is to find the global minimizer of the sum of multiple agents' local nonconvex objective functions in a networked system. To solve such a distribu... 详细信息
来源: 评论
Efficiency of stochastic algorithm for Different Target Functions in the Task of Estimating Radio Pulse Time Shift  6
Efficiency of Stochastic Algorithm for Different Target Func...
收藏 引用
6th International Conference on Information Technology and Nanotechnology (IEEE ITNT)
作者: Tashlinskii, Alexander Kovalenko, Roman Tsaryov, Mikhail Ulyanovsk State Tech Univ Radio Engn Dept Ulyanovsk Russia
A comparative analysis of efficiency of different target functions for stochastic algorithms in estimating time shift between unfiltered radio pulses received on spatially spaced receivers is carried out. As target fu... 详细信息
来源: 评论
A novel node-based non-structural model for mass exchanger network synthesis using a stochastic algorithm
收藏 引用
JOURNAL OF CLEANER PRODUCTION 2022年 第0期376卷
作者: Zhou, Zhiqiang Cui, Guoming Xiao, Yuan Univ Shanghai Sci & Technol Sch Energy & Power Engn 516 Jungong Rd Shanghai 200093 Peoples R China
The use of mass exchange networks is an effective means of reducing both pollutant emissions and investment costs in chemical industrial processes. Here, a new simultaneous model based on a mixed integer non-linear pr... 详细信息
来源: 评论
Distributed stochastic Proximal algorithm With Random Reshuffling for Nonsmooth Finite-Sum Optimization
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024年 第3期35卷 4082-4096页
作者: Jiang, Xia Zeng, Xianlin Sun, Jian Chen, Jie Xie, Lihua Beijing Inst Technol Sch Automat Key Lab Intelligent Control & Decis Complex Syst Beijing Peoples R China Beijing Inst Technol Chongqing Innovat Ctr Chongqing 401120 Peoples R China Tongji Univ Sch Elect & Informat Engn Shanghai 200082 Peoples R China Beijing Inst Technol Beijing Adv Innovat Ctr Intelligent Robots & Syst Beijing 100081 Peoples R China Beijing Inst Technol Key Lab Biomimet Robots & Syst Minist Educ Beijing 100081 Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore
The nonsmooth finite-sum minimization is a fundamental problem in machine learning. This article develops a distributed stochastic proximal-gradient algorithm with random reshuffling to solve the finite-sum minimizati... 详细信息
来源: 评论
A stochastic EM algorithm FOR MIXTURES WITH CENSORED-DATA
收藏 引用
JOURNAL OF STATISTICAL PLANNING AND INFERENCE 1995年 第1期46卷 1-25页
作者: CHAUVEAU, D UNIV MARNE VALLEE EQUIPE ANAL & MATH APPLF-93166 NOISY LE GRANDFRANCE TEXAS TECH UNIV LUBBOCKTX 79409
The stochastic EM algorithm is a widely applicable approach for computing maximum likelihood estimates for the mixture problem. We present here an extension of the SEM algorithm in a particular case of incomplete data... 详细信息
来源: 评论
A toolbox using the stochastic optimization algorithm MIPT and ChemCAD for the systematic process retrofit of complex chemical processes
收藏 引用
COMPUTERS & CHEMICAL ENGINEERING 2016年 84卷 371-381页
作者: Otte, Daniel Lorenz, Hilke-Marie Repke, Jens-Uwe TU Bergakademie Freiberg D-09599 Freiberg Germany
Global optimization techniques using powerful algorithms have led to a wide range of applications to increase the efficiency of chemical processes. Nevertheless, the performance for optimization of process models is l... 详细信息
来源: 评论
COMPETITIVE INTERACTIONS DURING DENDRITIC GROWTH - A SIMPLE stochastic GROWTH algorithm
收藏 引用
BRAIN RESEARCH 1992年 第1期576卷 152-156页
作者: NOWAKOWSKI, RS HAYES, NL EGGER, MD UNIV MED & DENT NEW JERSEY ROBERT WOOD JOHNSON MED SCHDEPT NEUROSCI & CELL BIOLPISCATAWAYNJ 08854
A simple growth algorithm is presented that deals with one feature of dendritic growth, the distance between branches. The fundamental assumption of our growth algorithm is that the lengths of dendritic segments are d... 详细信息
来源: 评论