咨询与建议

限定检索结果

文献类型

  • 67 篇 期刊文献
  • 25 篇 会议

馆藏范围

  • 92 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 工学
    • 41 篇 电气工程
    • 30 篇 计算机科学与技术...
    • 28 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 9 篇 电子科学与技术(可...
    • 6 篇 仪器科学与技术
    • 5 篇 软件工程
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
  • 22 篇 理学
    • 17 篇 数学
    • 6 篇 系统科学
    • 5 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 海洋科学
  • 12 篇 管理学
    • 12 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 2 篇 法学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 92 篇 stochastic gradi...
  • 18 篇 parameter estima...
  • 7 篇 gradient methods
  • 6 篇 adaptive filteri...
  • 6 篇 stochastic proce...
  • 4 篇 averaging
  • 4 篇 system identific...
  • 4 篇 least mean squar...
  • 3 篇 multi-innovation
  • 3 篇 bernstein von-mi...
  • 3 篇 stochastic appro...
  • 3 篇 variance reducti...
  • 3 篇 convergence
  • 3 篇 optimisation
  • 3 篇 machine learning
  • 3 篇 convergence rate
  • 3 篇 stochastic sampl...
  • 3 篇 time-delay
  • 3 篇 inverse reinforc...
  • 3 篇 error statistics

机构

  • 4 篇 huaiyin normal u...
  • 3 篇 jiangnan univ sc...
  • 3 篇 cornell univ sch...
  • 2 篇 nantong univ sch...
  • 2 篇 school of mathem...
  • 2 篇 wuxi inst techno...
  • 2 篇 univ connecticut...
  • 2 篇 tsinghua univ de...
  • 2 篇 univ british col...
  • 2 篇 jiangnan univ sc...
  • 2 篇 columbia univ de...
  • 2 篇 jiangnan univ ke...
  • 1 篇 chinese acad sci...
  • 1 篇 bsa crescent ins...
  • 1 篇 henan univ urban...
  • 1 篇 yonsei univ ctr ...
  • 1 篇 ctr wiskunde & i...
  • 1 篇 univ putra malay...
  • 1 篇 wuxi profess col...
  • 1 篇 edf r&d dep osir...

作者

  • 4 篇 krishnamurthy vi...
  • 4 篇 hu jinchun
  • 4 篇 chen badong
  • 4 篇 sun zengqi
  • 3 篇 jing shaoxue
  • 3 篇 ding feng
  • 3 篇 chen jing
  • 2 篇 phuong ha nguyen
  • 2 篇 yin george
  • 2 篇 lou xuyang
  • 2 篇 smith david
  • 2 篇 gu ya
  • 2 篇 geiersbach carol...
  • 2 篇 wang xiaodong
  • 2 篇 kaafar mohamed a...
  • 2 篇 farokhi farhad
  • 2 篇 schober r
  • 2 篇 quoc tran-dinh
  • 2 篇 yiu s
  • 2 篇 wu nan

语言

  • 90 篇 英文
  • 2 篇 其他
检索条件"主题词=Stochastic Gradient Algorithm"
92 条 记 录,以下是41-50 订阅
排序:
Parameter identification of Volterra nonlinear system based on Levenberg-Marquardt recursive algorithm
Parameter identification of Volterra nonlinear system based ...
收藏 引用
第34届中国控制与决策会议
作者: Jie Chu Junhong Li Tiancheng Zong School of Electrical Engineering Nantong University
The Volterra model can approximate many nonlinear systems,and it is a typical nonlinear *** paper studies the parameter estimation problem of the Volterra *** the Levenberg-Marquardt optimization method and the recurs... 详细信息
来源: 评论
The Value of Collaboration in Convex Machine Learning with Differential Privacy  41
The Value of Collaboration in Convex Machine Learning with D...
收藏 引用
41st IEEE Symposium on Security and Privacy (SP)
作者: Wu, Nan Farokhi, Farhad Smith, David Kaafar, Mohamed Ali Macquarie Univ N Ryde NSW Australia CSIRO Data61 Canberra ACT Australia Univ Melbourne Melbourne Vic 3010 Australia Australian Natl Univ Canberra ACT Australia
In this paper, we apply machine learning to distributed private data owned by multiple data owners, entities with access to non-overlapping training datasets. We use noisy, differentially-private gradients to minimize... 详细信息
来源: 评论
On Large Batch Training and Sharp Minima: A Fokker-Planck Perspective
收藏 引用
JOURNAL OF STATISTICAL THEORY AND PRACTICE 2020年 第3期14卷 1-31页
作者: Dai, Xiaowu Zhu, Yuhua Univ Calif Berkeley CDAR Berkeley CA 94720 USA Univ Calif Berkeley Simons Inst Theory Comp Berkeley CA 94720 USA Stanford Univ Dept Math Stanford CA 94305 USA
We study the statistical properties of the dynamic trajectory of stochastic gradient descent (SGD). We approximate the mini-batch SGD and the momentum SGD as stochastic differential equations. We exploit the continuou... 详细信息
来源: 评论
A unified convergence analysis for shuffling-type gradient methods
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2021年 第1期22卷 9397-9440页
作者: Lam M. Nguyen Quoc Tran-Dinh Dzung T. Phan Phuong Ha Nguyen Marten Van Dijk IBM Research Thomas J. Watson Research Center Yorktown Heights NY Department of Statistics and Operations Research The University of North Carolina at Chapel Hill Chapel Hill NC eBay Inc. San Jose CA Centrum Wiskunde & Informatica Amsterdam Netherlands
In this paper, we propose a unified convergence analysis for a class of generic shuffling-type gradient methods for solving finite-sum optimization problems. Our analysis works with any sampling without replacement st... 详细信息
来源: 评论
PROJECTED stochastic gradientS FOR CONVEX CONSTRAINED PROBLEMS IN HILBERT SPACES
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2019年 第3期29卷 2079-2099页
作者: Geiersbach, Caroline Pflug, Georg Ch Univ Vienna Dept Stat & Operat Res A-1030 Vienna Austria IIASA Schlosspl 1 A-2361 Laxenburg Austria
Convergence of a projected stochastic gradient algorithm is demonstrated for convex objective functionals with convex constraint sets in Hilbert spaces. In the convex case, the sequence of iterates u(n) converges weak... 详细信息
来源: 评论
Research on a learning rate with energy index in deep learning
收藏 引用
NEURAL NETWORKS 2019年 110卷 225-231页
作者: Zhao, Huizhen Liu, Fuxian Zhang, Han Liang, Zhibing Air Force Engn Univ Changle East Rd1 Jia Zi Xian Shaanxi Peoples R China
The stochastic gradient descent algorithm (SGD) is the main optimization solution in deep learning. The performance of SGD depends critically on how learning rates are tuned over time. In this paper, we propose a nove... 详细信息
来源: 评论
Adaptive Filtering Under the Maximum Correntropy Criterion With Variable Center
收藏 引用
IEEE ACCESS 2019年 7卷 105902-105908页
作者: Zhu, Lingfei Song, Chengtian Pan, Lizhi Li, Jili Beijing Inst Technol Sch Mechatron Engn Beijing 100081 Peoples R China Huaihai Ind Grp Changzhi 046012 Peoples R China
Recently, an extended version of correntropy, whose center can locate at any position has been proposed and applied in a new optimization criterion called maximum correntropy criterion with variable center (MCC-VC). I... 详细信息
来源: 评论
Parameter estimation algorithm for d-step time delay systems
收藏 引用
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL 2019年 第3-4期32卷 199-203页
作者: Gu, Ya Zhu, Peiyi Li, Xiangli Gu, Jianfei Changshu Inst Technol Sch Elect Engn & Automat Changshu Jiangsu Peoples R China
This article proposes the methods of parameter estimation and state estimation to calculate state space systems with delay. Associating the properties of linear conversion and shift operators, the state space model ca... 详细信息
来源: 评论
ICI Suppression of Underwater Acoustic OFDM Signal Transmission by Differential Multichannel Detection  2
ICI Suppression of Underwater Acoustic OFDM Signal Transmiss...
收藏 引用
IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT)
作者: Ma, Xuefei Wang, Bo Li, Yang Hu, Pengpeng Wang, Tingling Wang, Guan Harbin Engn Univ Coll Underwater Acoust Engn Harbin Peoples R China Beijing Great Wall Elect & Equipment Co Ltd Beijing Peoples R China Syst Engn Res Inst Syst Engn Innovat Ctr Beijing Peoples R China
In this paper, we propose an underwater communication method that can realize real-time communication, which can be used for communication between high-speed UUV and underwater intelligent nodes. This method of Dopple... 详细信息
来源: 评论
Minimum deviation distribution machine for large scale regression
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2018年 146卷 167-180页
作者: Liu, Ming-Zeng Shao, Yuan-Hai Wang, Zhen Li, Chun-Na Chen, Wei-Jie Dalian Univ Technol Sch Math & Phys Sci Panjin 124221 Peoples R China Hainan Univ Sch Econ & Management Haikou 570228 Hainan Peoples R China Inner Mongolia Univ Sch Math Sci Hohhot 010021 Peoples R China Zhejiang Univ Technol Zhijiang Coll Hangzhou 310024 Zhejiang Peoples R China
In this paper, by introducing the statistics of training data into support vector regression (SVR), we propose a minimum deviation distribution regression (MDR). Rather than just minimizing the structural risk, MDR al... 详细信息
来源: 评论