咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 5 篇 stream data clus...
  • 2 篇 incremental clus...
  • 1 篇 denclue
  • 1 篇 clustering algor...
  • 1 篇 two-stage cluste...
  • 1 篇 linear discrimin...
  • 1 篇 dimension reduct...
  • 1 篇 incremental grap...
  • 1 篇 data mining
  • 1 篇 inference algori...
  • 1 篇 streams
  • 1 篇 clustering metho...
  • 1 篇 knowledge acquis...
  • 1 篇 density-based cl...
  • 1 篇 kernel density e...
  • 1 篇 clustering algor...
  • 1 篇 kernel
  • 1 篇 linear discrimin...
  • 1 篇 recurrent change
  • 1 篇 estimation

机构

  • 1 篇 curtin univ tech...
  • 1 篇 lviv polytech na...
  • 1 篇 hubei univ techn...
  • 1 篇 chulalongkorn un...
  • 1 篇 srinakharinwirot...
  • 1 篇 univ ottawa sch ...
  • 1 篇 polish acad sci ...
  • 1 篇 univ ottawa telf...
  • 1 篇 dalhousie univ d...

作者

  • 2 篇 laohakiat sirisu...
  • 1 篇 luehr sebastian
  • 1 篇 raahemi bijan
  • 1 篇 mohammadi mandi
  • 1 篇 lv jiazhi
  • 1 篇 phimoltares suph...
  • 1 篇 lazarescu mihai
  • 1 篇 kochan orest
  • 1 篇 li xiang
  • 1 篇 cai ting
  • 1 篇 lursinsap chidch...
  • 1 篇 ye zhiwei
  • 1 篇 matwin stan
  • 1 篇 bigdeli elnaz
  • 1 篇 sa-ing vera
  • 1 篇 zhou wen

语言

  • 5 篇 英文
检索条件"主题词=Stream data clustering"
5 条 记 录,以下是1-10 订阅
排序:
A clustering algorithm for stream data with LDA-based unsupervised localized dimension reduction
收藏 引用
INFORMATION SCIENCES 2017年 381卷 104-123页
作者: Laohakiat, Sirisup Phimoltares, Suphakant Lursinsap, Chidchanok Chulalongkorn Univ Dept Math & Comp Sci Bangkok Thailand
We present an algorithm for clustering high dimensional streaming data. The algorithm incorporates dimension reduction into the stream clustering framework. When a new datum arrives, the algorithm performs dimension r... 详细信息
来源: 评论
Incremental clustering of dynamic data streams using connectivity based representative points
收藏 引用
data & KNOWLEDGE ENGINEERING 2009年 第1期68卷 1-27页
作者: Luehr, Sebastian Lazarescu, Mihai Curtin Univ Technol Dept Comp Bentley WA 6102 Australia
We present an incremental graph-based clustering algorithm whose design was motivated by a need to extract and retain meaningful information from data streams produced by applications such as large scale surveillance,... 详细信息
来源: 评论
An incremental density-based clustering framework using fuzzy local clustering
收藏 引用
INFORMATION SCIENCES 2021年 547卷 404-426页
作者: Laohakiat, Sirisup Sa-ing, Vera Srinakharinwirot Univ Fac Sci Dept Comp Sci Bangkok Thailand
This paper presents a novel incremental density-based clustering framework using the one-pass scheme, named Fuzzy Incremental Density-based clustering (FIDC). Employing one-pass clustering in which each data point is ... 详细信息
来源: 评论
Incremental Cluster Updating Using Gaussian Mixture Model  28th
Incremental Cluster Updating Using Gaussian Mixture Model
收藏 引用
28th Canadian Conference on Artificial Intelligence (Canadian AI)
作者: Bigdeli, Elnaz Mohammadi, Mandi Raahemi, Bijan Matwin, Stan Univ Ottawa Sch Elect Engn & Comp Sci Ottawa ON Canada Univ Ottawa Telfer Sch Management Knowledge Discovery & Data Min Lab Ottawa ON K1H 8M5 Canada Dalhousie Univ Dept Comp Halifax NS Canada Polish Acad Sci Inst Comp Sci PL-00901 Warsaw Poland
In this paper, we present a new approach for updating clusters incrementally. The proposed incremental approach preserves comprehensive statistical information of the clusters in form of Gaussian Mixture Models (GMM).... 详细信息
来源: 评论
A streaming data clustering Method Based on Dual Strategies Improved DENCLUE
收藏 引用
IEEE ACCESS 2024年 12卷 153709-153726页
作者: Cai, Ting Lv, Jiazhi Ye, Zhiwei Li, Xiang Zhou, Wen Kochan, Orest Hubei Univ Technol Sch Comp Sci Wuhan 430068 Peoples R China Lviv Polytech Natl Univ Dept Measuring Informat Technol UK-79013 Lvov Ukraine
streaming data arrives continually and is characterized by fast, massive, dynamic evolution and instability. Different from traditional static data clustering, streaming data clustering algorithms need to consider con... 详细信息
来源: 评论