咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 7 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 2 篇 电气工程
    • 2 篇 生物工程
    • 1 篇 计算机科学与技术...
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 3 篇 理学
    • 3 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 3 篇 农学

主题

  • 7 篇 structure learni...
  • 1 篇 prior structure
  • 1 篇 structural bic
  • 1 篇 scale-free
  • 1 篇 computational co...
  • 1 篇 causal structure
  • 1 篇 wind speed
  • 1 篇 bayesian informa...
  • 1 篇 transcription ne...
  • 1 篇 network topology
  • 1 篇 markov random fi...
  • 1 篇 tsk model
  • 1 篇 correlation
  • 1 篇 gene expression
  • 1 篇 chow-liu algorit...
  • 1 篇 dynamic bayesian...
  • 1 篇 ebf units
  • 1 篇 gene regulatory ...
  • 1 篇 two-step algorit...
  • 1 篇 model pool

机构

  • 1 篇 specpro inc envi...
  • 1 篇 gheorghe asachi ...
  • 1 篇 univ southern ma...
  • 1 篇 chinese univ hon...
  • 1 篇 univ north carol...
  • 1 篇 luxembourg inst ...
  • 1 篇 nyu dept civil &...
  • 1 篇 univ so mississi...
  • 1 篇 ne agr univ plan...
  • 1 篇 chinese univ hon...
  • 1 篇 dartmouth coll g...
  • 1 篇 dartmouth coll g...
  • 1 篇 environm lab eng...
  • 1 篇 nw polytech univ...

作者

  • 1 篇 zhou jie
  • 1 篇 karagas margaret...
  • 1 篇 perkins edward j...
  • 1 篇 nguyen quang p.
  • 1 篇 munteanu f.
  • 1 篇 ciobanu alexandr...
  • 1 篇 mcritchie susan
  • 1 篇 viles weston d.
  • 1 篇 gong ping
  • 1 篇 zhang kai-long
  • 1 篇 li yong
  • 1 篇 dade erika
  • 1 篇 r. srikant
  • 1 篇 ji wei
  • 1 篇 nemes c.
  • 1 篇 zhang chaoyang
  • 1 篇 madan juliette c...
  • 1 篇 hoen anne g.
  • 1 篇 zhou xin-she
  • 1 篇 gui jiang

语言

  • 7 篇 英文
检索条件"主题词=Structure learning algorithm"
7 条 记 录,以下是1-10 订阅
排序:
ReTRN: A retriever of real transcriptional regulatory network and expression data for evaluating structure learning algorithm
收藏 引用
GENOMICS 2009年 第5期94卷 349-354页
作者: Li, Yong Zhu, Yanming Bai, Xi Cai, Hua Ji, Wei Guo, Dianjing NE Agr Univ Plant Bioengn Lab Harbin Peoples R China Chinese Univ Hong Kong Dept Biol Shatin Hong Kong Peoples R China Chinese Univ Hong Kong State Key Lab Agrobiotechnol Shatin Hong Kong Peoples R China
One of the important goals in systems biology is to infer transcription network based on gene expression data. Validation of the reconstructed network often requires benchmark datasets, e.g. gene expression data, whic... 详细信息
来源: 评论
Causal structure learning for travel mode choice using structural restrictions and model averaging algorithm
收藏 引用
TRANSPORTMETRICA A-TRANSPORT SCIENCE 2017年 第4期13卷 299-325页
作者: Ma, Tai-Yu Chow, Joseph Y. J. Xu, Jia Luxembourg Inst Socioecon Res LISER Maison Sci Humaines11 Porte Sci Esch Sur Alzette Luxembourg NYU Dept Civil & Urban Engn Brooklyn NY USA
This work contributes to develop a new methodology to identify empirical-data-driven causal structure of a domain knowledge. We propose an algorithm as a two-stage procedure by first drawing relevant prior partial rel... 详细信息
来源: 评论
learning the structure of gene regulatory networks from time series gene expression data
收藏 引用
BMC GENOMICS 2011年 第Sup5期12卷 S13-S13页
作者: Li, Haoni Wang, Nan Gong, Ping Perkins, Edward J. Zhang, Chaoyang Univ So Mississippi Sch Comp Hattiesburg MS 39406 USA SpecPro Inc Environm Serv San Antonio TX 78216 USA USA Environm Lab Engineer Res & Dev Ctr Vicksburg MS 39180 USA
Background: Dynamic Bayesian Network (DBN) is an approach widely used for reconstruction of gene regulatory networks from time-series microarray data. Its performance in network reconstruction depends on a structure l... 详细信息
来源: 评论
Information enhanced model selection for Gaussian graphical model with application to metabolomic data
收藏 引用
BIOSTATISTICS 2021年 第3期23卷 926-948页
作者: Zhou, Jie Hoen, Anne G. Mcritchie, Susan Pathmasiri, Wimal Viles, Weston D. Nguyen, Quang P. Madan, Juliette C. Dade, Erika Karagas, Margaret R. Gui, Jiang Dartmouth Coll Geisel Sch Med Dept Biomed Data Sci 3 Rope Ferry Rd Hanover NH 03755 USA Dartmouth Coll Geisel Sch Med Dept Epidemiol 3 Rope Ferry Rd Hanover NH 03755 USA Univ North Carolina Chapel Hill Nutr Res Inst Dept Nutr Sch Publ Hlth 500 Laureate Way Kannapolis NC 28081 USA Univ Southern Maine Dept Math & Stat 96 Falmouth St Portland ME 04103 USA
In light of the low signal-to-noise nature of many large biological data sets, we propose a novel method to learn the structure of association networks using Gaussian graphical models combined with prior knowledge. Ou... 详细信息
来源: 评论
Implement TSK Model Using a Self-constructing Fuzzy Neural Network
Implement TSK Model Using a Self-constructing Fuzzy Neural N...
收藏 引用
1st WRI Global Congress on Intelligent Systems (GCIS 2009)
作者: Yao, Yuan Zhang, Kai-Long Zhou, Xin-She NW Polytech Univ Sch Comp Xian 710072 Peoples R China
This paper proposes an approach to implement TSK model by using a self-constructing fuzzy neural network (SCFNN). This network is built based on ellipsoidal basis function (EBF), which can be divided into two parts. T... 详细信息
来源: 评论
A Bayesian Approach of the Availability Complementarity of Renewable Resources  10
A Bayesian Approach of the Availability Complementarity of R...
收藏 引用
10th International Conference and Expositions on Electrical and Power Engineering (EPE)
作者: Munteanu, F. Ciobanu, Alexandra Nemes, C. Gheorghe Asachi Tech Univ Iasi Romania
The availability and the autonomy of local power systems supplied from renewable sources are the main subject of the paper. Due to pure random nature of solar and wind characteristics, the Bayes network methodology wa... 详细信息
来源: 评论
learning Loosely Connected Markov Random Fields
收藏 引用
Stochastic Systems 2013年 第2期3卷 322-633页
作者: Rui Wu R. Srikant Jian Ni
We consider the structure learning problem for graphical models that we call loosely connected Markov random fields, in which the number of short paths between any pair of nodes is small, and present a new conditional... 详细信息
来源: 评论